CSE 417
Dynamic Programming (pt 2)

Look at the Last Element

Dynamic Programming Review

> Apply the steps...
1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you'll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order

> Key question:
1. Can you solve the problem by combining solutions from sub-problems?

> Count sub-problems to determine running time
— total is number of sub-problems times time per sub-problem

Review From Last Time

> Bitcoin Mining Broken Robot 2
— sub-problems: where robot starts 1) o
— max coins he can collect at (i,j) = 1 e
max(max coins he can collect at (i-1,j), 0 IS
max coins he can collect at (i,j-1)) 00|01 ol &
+ 1 if coin at (i,)) 0lef0|1|1]1]1]2]2

— solve from bottom-left to top-right

Review From Last Time

> Bitcoin Mining Broken Robot
— sub-problems: where robot starts *
> Bitcoin Mining Bomber Robot &
= ﬁ
— sub-problems: where robot starts & if has bomb (0/1) ¢ -
% * &
— max of 4 options at (i,j,1): 21212121213 3/5,'/3 ’ :
> step left: (i-1,j,1) F
11202237233
> step down: (i,j-1,1) — /'
> blast left: (i-1,j,0) 112|221 0,12 222
> blast right: (i,j-1,0) o|o|C[1|&|1|1]|0]|2
— ignore rocks at that spot 0Ol01I|O0O 1‘(0Ol1101212
— still O(1) to calculate ololol1l1l1111212

Review From Last Time

> Can be implemented in Excel...
> |Input Worksheet:

A B & D E F G H

1 |coin

2 rocks coin

3 |coin coin rocks coin

4 rocks
5 rocks rocks

6 exit coin coin

Review From Last Time

> Can be implemented in Excel...

> No Bomb Worksheet:

fx =IF(Input!D5="rocks",-1,MAX(OptNoBomb!C5,0ptNoBomb!D6)+IF(Input!D5="coin",1,0))

A B & D E F G H I

il 2 2 2 2 2 3 3 3 3
2 1 2 -1 2 2 3 3 3 3
3 1 2 2 2 -1 2 2 2 2
8 0 0 0 1 1 1 1 1 2
5 0 0 0 1- -1 1 -1 2 2
6 0 0 0 1 1 1 1 2 2

Review From Last Time

> Can be implemented in Excel...

> Blast Worksheet (ignore bombs at that spot):

fx =MAX(OptNoBomb!C5,0ptNoBomb!D6)+IF(Input!D5="coin",1,0)

I A B (&

B e | F |G| H|[

1 2 2 2 2 2 3 3 3 3
2 1 2 2 2 2 3 3 3 3
3 01 2 2 2 2 2 2 2 2
4. 0o o0 o0 1 1 1 1 2 2
s| o o o _11 1 1 1 2 2
& o0 o0 o0 1 1 1 1 2 2

Review From Last Time

> Can be implemented in Excel...

> With Bomb Worksheet;

fx =IF(Input!D5="rocks",-1,MAX(OptWithBomb!C5,0ptWithBomb!D6,0ptBlast!C5,0ptBlast!D6)+IF(Input!D5="coin",1,0))

AlB|cBBE E|F |6 |H]|[I

1 2 2 2 2 2 a4 4 a4 a
2 1 2 41 2 2 4 4 4 a
3. 1 2 2 2 a4 3 3 3 3
4. 0o o0 o0 1 1 1 1 1 2
s| o o o _1! 1 1 1 2 2
6 o0 o0 o0 1 1 1 1 2 2

Weighted Interval Scheduling

> Problem: Given a set of intervals [sy, e4], ..., [S, €,] (start & end)
with weights wy, .., w,, find the subset of non-overlapping
intervals with most total weight.

> Would be strictly easier without weights
— has a greedy algorithm (see textbook)

— for similar reasons as to why Robot problem is easier with no coins

> that one also has a greedy solution in that case (shortest path)

— (will see something similar in the next topic:
max flow is easier than min-cost flow)

Weighted Interval Scheduling

> Brute force: try all subsets...
— 2" subsets
— for n =300, this is larger than number of molecules in the universe

> Apply dynamic programming...
— try to get from impossible to possible

Weighted Interval Scheduling

> Apply dynamic programming...

— look for ways to solve the problem using the solution to sub-problems

> Q: What sub-problems would be useful?

> As with robot, often useful to think about the /ast step of solution
— sub-problems told us how well we could do after a step left vs down
— in this case, decisions are about whether to include each interval

— consider: should we include the /ast interval?
> what is the last one?
> how about the one that finishes last

Weighted Interval Scheduling

Two options:
o 1. include 8
v 2. don'tinclude 8

if we include 8, can't use 6 or 7.
i 8 + any solution using [1, ..., 5]

if we don't include 8, then
we can still have any solution
6 over intervals [1, ..., 7]

> Time

Weighted Interval Scheduling

Two options:
1. include 8

o 2. don'tinclude 8
2 opt value over [1, ..., 8]
4 = max(opt value over [1, ..., 7],
W + opt value over [1, ..., 5])
5
7 | optimal substructure
2 . Time
1 2 3 4 5 6 7 8 9 10 11

Weighted Interval Scheduling

Two options:
o 1. include 8
v 2. don'tinclude 8

3 opt value over [1, ..., 8]
- = max(opt value over [1, ..., 7],
wg + opt value over [1, ..., 5])

; opt solution must be

opt on sub-problem
> Time

Weighted Interval Scheduling

Two options:
1. include 8

o 2. don'tinclude 8
3 opt value over [1, ..., 8]
4 = max(opt value over [1, ..., 7],
wjg + opt value over [1, ..., 5])
5
&
7 | DP does not work
without this!
8 » Time
1 2 3 4 5 6 7 8 9 10 11

Weighted Interval Scheduling

> Order the elements by finish time
— makes it easy to describe which ones can be used together

. Can find opt value for [1, ..., nJ using only [1, ..., jl with j < n,
. Need solutionto [1, ...,j]foreachj=1,.., n.
. Solve each of those starting with j = 1.

> opt value for [1] = w,

> optvalue for [1, ..., j] = max(
opt value for [1, ..., j-1],
w; + opt value for [1, ..., il where g, < s))

> Apply dynamic programming...
1
2
3

choose largest i for which this holds

Weighted Interval Scheduling

. Can find opt value for [1, ..., nJ using only [1, .., j] with j < n.
. Need solutionto [1, ...,j]foreachj=1,.., n.
. Solve each of those starting with j = 1.

> optvalue for [1] = w,

> optvalue for [1, ..., j] = max(
opt value for [1, ..., j-1],
w; + opt value for [1, ..., il where g; < s)

> Apply dynamic programming...
1
2
3

> Q: How do we find the largest i with e; < s;?
> A: binary search

Weighted Interval Scheduling

. Can find opt value for [1, ..., nJ using only [1, .., j] with j < n.
. Need solutionto [1, ...,j]foreachj=1,.., n.
. Solve each of those starting with j = 1.

> optvalue for [1] = w,

> optvalue for [1, ..., j] = max(
opt value for [1, ..., j-1],
w; + opt value for [1, ..., il where g; < s)

> Apply dynamic programming...
1
2
3

> Only n sub-problems
> Can solve all in O(n log n) time

Weighted Interval Scheduling

> Sort intervals by e, in O(n log n) time

> Apply dynamic programming in O(n log n) time
— only n sub-problems

— can solve all in O(n log n) time
> can actually solve all in O(n) time
> Dbinary searches are doing too much work (as in previous examples)
> can optimize to O(n), but that doesn’t improve overall run time

> As before, can get actual solution from the table

Max Sub-array Sum

> Problem: Given an array A of integers,
find max of A[i] +... + A[j-1Joverall0<i<j<n
— we allow i =jso that the sub-array A[i .. j-1] can be empty
— note that A[i]'s can be negative

> Back to my favorite interview question...
— brute force in O(n3) or O(n?)
— divide & conquer in O(n log n)

Max Sub-array Sum

> Apply dynamic programming...
— need to find a way to write the solution in terms of sub-problems
— try the same approach as before...

> Q: does the opt solution include the last element?
— If not, the answer is the optimal solution on A[0 .. n-2]

— Ifyes, the answer is what??
> A[n-1] + optimal solution on A[O .. n-2] need not be a sub-array...

n-1

Max Sub-array Sum

> Apply dynamic programming...
— need to find a way to write the solution in terms of sub-problems
— try the same approach as before...

> Q: does the opt solution include the last element?
— If not, the answer is the optimal solution on A[0 .. n-2]

— Ifyes, the answer is what??
> A[n-1] + optimal solution on A[O .. n-2] ending at n-2

Max Sub-array Sum v

> Apply dynamic programming...
— need to find a way to write the solution in terms of sub-problems
— try the same approach as before...

> Q: does the opt solution include the last element?
— If not, the answer is the optimal solution on A[0 .. n-2]
— Ifyes, the answer is what??
> A[n-1] + optimal solution ending at n-2
— looks like we need two types of sub-problems:

1. optimal solution over A[O .. j-1]
2. optimal solution over A[O .. j-1] that end at A[j-1]

Max Sub-array Sum

> Looks like we need two types of sub-problems:
1. optimal solution over A[O .. j-1]
2. optimal solution over A[O .. j-1] that end at A[j-1]

> Sufficient to just solve sub-problems of type 2
— every solution has to end somewhere
— optimal value = max(opt value over A[0 .. j-1]) forj=1..n

> Focus on just solving problems of type 2...

Max Sub-array Sum

only sub-arrays ending at n-1

> Problem 2: Given an array A of integers,
find max of A[i] +... + A[n-1]Joverall0<i<n

> Apply dynamic programming...
> Find a way to write the solution in terms of sub-problems...

. . optimal substructure
> Q: does the opt solution include the last element?

— if no, then optvalue=0
> the only interval not including A[n-1] is the empty interval
— ifyes, then opt value = A[n-1] + opt value ending at n-2
> every sub-array ending at n-1 is a subarray ending at n-2 + A[n-1]

Max Sub-array Sum

> Q: does the opt solution include the last element?
— ifyes, then opt value = A[n-1] + opt value ending at n-2
> every sub-array ending at n-1 is a subarray ending at n-2 + A[n-1]
— if no, then optvalue=0
> the only interval not including A[n-1] is the empty interval

A = [31, -41, 59, 26, -53, 58, 97]

max (A[i] +... + A[n-1]) with i < n-2
=max (A[i] + ... + A[n-2] + A[n-1]) with i < n-2
= max (A[i] + ... + A[n-2]) with i £ n-2 + A[n-1]

Max Sub-array Sum

. Can find opt value for A[O, ..., n-1] using only A[O, .., j-1] with j < n.
. Need opt value for A[Q, ..., j-1] foreachj=1,..., n.
. Solve each of those starting with j = 1.

> opt value for A[O .. 0] = max(0, A[0])

> optvalue for A[O .. j-1] = max(0, opt value for A[O .. j-2] + A[j-1])

> Apply dynamic programming for opt sub-array ending at n-1...
1
2
3

> Only n sub-problems
> Can solve all in O(n) time

Max Sub-array Sum

> Solve all sub-problems of type 2 in O(n) time
> Take maximum of these to solve original problem

> Better yet:
— keep track of maximum as you go
— no longer need to store entire array: just previous element and max so far

> Erasing your tracks will make you look smarter
— solutions on web do not mention dynamic programming

Paragraph Layout in TeX

> TeX is a document typesetting program
— non-WYSIWYG
— takes as input a description of the document
— outputs a PDF (or similar) with the actual document

> Still widely used in mathematics and theoretical CS
— mainly due to how well it formats equations
— (partly just inertia)
— generally considered to produce beautiful documents

Paragraph Layout in TeX

> TeX is a document typesetting program
— non-WYSIWYG
— takes as input a description of the document
— outputs a PDF (or similar) with the actual document

> TeX program is one of the largest bug-free programs ever written
— author, Don Knuth, is undoubtedly one of the best programmers in history
— what counts as “bug-free”, however, is a matter of debate...

Paragraph Layout in TeX

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus
elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dic-

> We Wl ” d |SCUSS pa ragra ph |ay0 ut tum gravida mauris. Nam arcu libero, nonummy eget, consectetuer

id, vulputate a, magna. Donec vehicula augue eu neque. Pellen-
— j.e. , S pl ittin g WO rds into lines tesque habitant morbi tristique senectus et netus et malesuada fames

can Choose to stretc h ors hrl.n k ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem.
- . Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tel-
Space between words on a line lus sit amet tortor gravida placerat. Integer sapien est, iaculis in,
: tium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices

— can break words using "-" e
g bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulv-
inar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius

orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis
quis, diam. Duis eget orci sit amet orci dignissim rutrum.

> TeX uses a similar approach to break blocks into pages

Paragraph Layout in TeX

> Choose where splits should go between words to create lines
— exponentially many options: 21, on a paragraph with n words

> paragraphs with, e.g., 100 words would already be problematic

> Do so in order to minimize “badness” of the paragraph

overfull / underfull lines are infinitely bad

otherwise, badness = 100 (required stretch / shrink)A3
badness of paragraph is (essentially) sum of line badness
breaking between words with “-” has an extra penalty

other special cases... (e.g., last line is not stretched)
> again, dynamic programming accommodates them without difficulty

Paragraph Layout in TeX

> Apply dynamic programming...
— need to find a way to write the solution in terms of sub-problems
— try the same approach as before...

> Q: does the opt solution include the last word?
— obviously it does
— the last word is always on the last time
— need a better question...

> Q: What does the last line look like in opt solution?

Paragraph Layout in TeX

> Apply dynamic programming...
— need to find a way to write the solution in terms of sub-problems
— try thinking about the last line in the solution...

> Q: What does the last line look like in opt solution?
— we know where it ends (at the last word)
— only interesting question is where it starts

— if it starts at word j, then cost is
(opt value for words 1, ..., j-1) +
badness of line with words j, ..., n

— (actually only need to consider j up until last line becomes overfull)

Paragraph Layout in TeX

> Apply dynamic programming...
— need to find a way to write the solution in terms of sub-problems
— try thinking about the last line in the solution...

. i ?
> Q:where does the last line start? optimal substructure as previous...

— optvalue forwords 1, .., n= badness of line with j, ..., n
max over j < n of . is common to all that split here
(opt value for words 1, ..., j-1) + so opt must be opt of those too

badness of line with words j, ..., n

— sub-problems again correspond to prefixes 1, ..., j-1
> only n of them

— BUT we need more than O(1) time to compute the formula

Paragraph Layout in TeX

. Can find opt value for 1, .., n using only prefixes 1, ..., j-1 with j < n.
. Need optvalue for 1, ..., k foreach k=1, ..., n.
. Solve each of those starting with k = 1.

> optvalue for 1 = badness of line [word 1]

> optvalue for1, .., k=maxoverj<k
(opt value for 1, ..., j-1) + (badness of line [word j, ..., word Kk])

> Apply dynamic programming...
1
2
3

> Potentially O(n) per sub-problem, so O(n?) time
— in reality, there is a bound of, say, 40 words on a line
— practical performance is O(n) [could be WYSIWYG today]

Optimal Breakout Trades

> The usual advice is to buy low and sell high,
but some trading strategies actually do the opposite!

> @Goal: Figure out if that has any chance of being profitable.

> Problem: Given future prices, find the maximum profit that can
be achieved from trades that only buy on highs and sell on lows.
— can only buy when price is highest in 11 weeks
— can only sell when price is lowest in 2 weeks
— short selling allowed with reverse limits

Optimal Breakout Trades

Crude oil futures prices, 2015-16

Optimal Breakout Trades

> Exponentially many possible sequences of trades
— brute force would not be feasible

> Apply dynamic programming...

— to find optimal sub-structure, consider the last trade

Optimal Breakout Trades

> Apply dynamic programming...
— to find optimal sub-structure, consider the last trade

> Q: What does the last trade look like in opt solution?

— if it does not end by selling on the last day,
then opt solution is the same as on prices 1 .. n-1

— if it does end by selling on the last day,
then opt value depends on where it buys...

Optimal Breakout Trades

> Apply dynamic programming...

— to find optimal sub-structure, consider the last trade

> Q: What does the last trade look like in opt solution?

— if it does not end by selling on the last day, optimal substructure
then opt solution is the same as on prices 1 .. n-1 (all are
— if it buys at time j and sells on the last day, then opt value = multiplied by the
(optvalueon 1 ...j-1) x (1 + percent change from j to n) same number)

— if it sells on the last day, then opt value = max over j < n of
(optvalueon 1 ...j-1) x (1 + percent change from j to n)

Optimal Breakout Trades

. Can find opt value for 1, .., n using only prefixes 1, ..., j with j <n.
. Need optvalue for 1, ..., k foreach k=1, ..., n.
. Solve each of those starting with k = 1.

> optvaluefor1=1 (can't sell until we buy)

> optvalue for 1, .., k = max(
opt value for 1, ..., k-1,
max over j < k of (opt value for 1, ..., j-1) x (1 + percent change from j to k)

> Apply dynamic programming...
1
2
3

> Potentially O(n) per sub-problem, so O(n?) time
— can optimize further, but still O(n?) in worst case

