
CSE 417
Dynamic Programming (pt 2)
Look at the Last Element

> HW4 is due on Friday
– start early!
– if you run into problems loading data (date parsing),

try running java with –Duser.country=US –Duser.language=en

Reminders

> Apply the steps...
1. Describe solution in terms of solution to any sub-problems
2. Determine all the sub-problems you’ll need to apply this recursively
3. Solve every sub-problem (once only) in an appropriate order

> Key question:
1. Can you solve the problem by combining solutions from sub-problems?

> Count sub-problems to determine running time
– total is number of sub-problems times time per sub-problem

Dynamic Programming Review

> Bitcoin Mining Broken Robot
– sub-problems: where robot starts
– max coins he can collect at (i,j) =

max(max coins he can collect at (i-1,j),
max coins he can collect at (i,j-1))

+ 1 if coin at (i,j)
– solve from bottom-left to top-right

Review From Last Time

2
1
1
0
0
0

0
0

0
0

1
1 1 1 1 2 2

> Bitcoin Mining Broken Robot
– sub-problems: where robot starts

> Bitcoin Mining Bomber Robot
– sub-problems: where robot starts & if has bomb (0/1)
– max of 4 options at (i,j,1):

> step left: (i-1,j,1)
> step down: (i,j-1,1)
> blast left: (i-1,j,0)
> blast right: (i,j-1,0)
– ignore rocks at that spot

– still O(1) to calculate

Review From Last Time

2
1
1
0
0
0

2
2
2
0
0
0

2
0
2
0
0
0

2
2
2
1
1
1

2
2
0
1
0
1

3
3
2
1
1
1

3
3
2
1
0
1

3
3
2
0
2
2

3
3
2
2
2
2

> Can be implemented in Excel...

> Input Worksheet:

Review From Last Time

> Can be implemented in Excel...

> No Bomb Worksheet:

Review From Last Time

> Can be implemented in Excel...

> Blast Worksheet (ignore bombs at that spot):

Review From Last Time

> Can be implemented in Excel...

> With Bomb Worksheet:

Review From Last Time

> Weighted Interval Scheduling
> Max Sub-array Sum
> Document Layout in TeX
> Optimal Breakout Trades

Outline for Today

> Problem: Given a set of intervals [s1, e1], ..., [sn, en] (start & end)
with weights w1, .., wn, find the subset of non-overlapping
intervals with most total weight.

> Would be strictly easier without weights
– has a greedy algorithm (see textbook)
– for similar reasons as to why Robot problem is easier with no coins

> that one also has a greedy solution in that case (shortest path)
– (will see something similar in the next topic:

max flow is easier than min-cost flow)

Weighted Interval Scheduling

> Brute force: try all subsets...
– 2n subsets
– for n = 300, this is larger than number of molecules in the universe

> Apply dynamic programming...
– try to get from impossible to possible

Weighted Interval Scheduling

> Apply dynamic programming...
– look for ways to solve the problem using the solution to sub-problems

> Q: What sub-problems would be useful?
> As with robot, often useful to think about the last step of solution

– sub-problems told us how well we could do after a step left vs down
– in this case, decisions are about whether to include each interval
– consider: should we include the last interval?

> what is the last one?
> how about the one that finishes last

Weighted Interval Scheduling

Weighted Interval Scheduling
Two options:

1. include 8
2. don’t include 8

if we don’t include 8, then
we can still have any solution
over intervals [1, ..., 7]

if we include 8, can’t use 6 or 7.
8 + any solution using [1, ..., 5]

Weighted Interval Scheduling
Two options:

1. include 8
2. don’t include 8

opt value over [1, ..., 8]
= max(opt value over [1, ..., 7],

w8 + opt value over [1, ..., 5])

optimal substructure

Weighted Interval Scheduling
Two options:

1. include 8
2. don’t include 8

opt value over [1, ..., 8]
= max(opt value over [1, ..., 7],

w8 + opt value over [1, ..., 5])

opt solution must be
opt on sub-problem

Weighted Interval Scheduling
Two options:

1. include 8
2. don’t include 8

opt value over [1, ..., 8]
= max(opt value over [1, ..., 7],

w8 + opt value over [1, ..., 5])

DP does not work
without this!

> Order the elements by finish time
– makes it easy to describe which ones can be used together

> Apply dynamic programming...
1. Can find opt value for [1, ..., n] using only [1, ..., j] with j < n.
2. Need solution to [1, ..., j] for each j = 1 ,..., n.
3. Solve each of those starting with j = 1.

> opt value for [1] = w1

> opt value for [1, ..., j] = max(
opt value for [1, ..., j-1],

wj + opt value for [1, ..., i] where ei ≤ sj)

Weighted Interval Scheduling

choose largest i for which this holds

> Apply dynamic programming...
1. Can find opt value for [1, ..., n] using only [1, .., j] with j < n.
2. Need solution to [1, ..., j] for each j = 1 ,..., n.
3. Solve each of those starting with j = 1.

> opt value for [1] = w1

> opt value for [1, ..., j] = max(
opt value for [1, ..., j-1],

wj + opt value for [1, ..., i] where ei ≤ sj)

> Q: How do we find the largest i with ei ≤ sj?
> A: binary search

Weighted Interval Scheduling

> Apply dynamic programming...
1. Can find opt value for [1, ..., n] using only [1, .., j] with j < n.
2. Need solution to [1, ..., j] for each j = 1 ,..., n.
3. Solve each of those starting with j = 1.

> opt value for [1] = w1

> opt value for [1, ..., j] = max(
opt value for [1, ..., j-1],

wj + opt value for [1, ..., i] where ei ≤ sj)

> Only n sub-problems
> Can solve all in O(n log n) time

Weighted Interval Scheduling

> Sort intervals by ei in O(n log n) time

> Apply dynamic programming in O(n log n) time
– only n sub-problems
– can solve all in O(n log n) time

> can actually solve all in O(n) time
> binary searches are doing too much work (as in previous examples)
> can optimize to O(n), but that doesn’t improve overall run time

> As before, can get actual solution from the table

Weighted Interval Scheduling

> Weighted Interval Scheduling
> Max Sub-array Sum
> Document Layout in TeX
> Optimal Breakout Trades

Outline for Today

> Problem: Given an array A of integers,
find max of A[i] + ... + A[j-1] over all 0 ≤ i ≤ j ≤ n

– we allow i = j so that the sub-array A[i .. j-1] can be empty
– note that A[i]’s can be negative

> Back to my favorite interview question...
– brute force in O(n3) or O(n2)
– divide & conquer in O(n log n)

Max Sub-array Sum

> Apply dynamic programming...
– need to find a way to write the solution in terms of sub-problems
– try the same approach as before...

> Q: does the opt solution include the last element?
– If not, the answer is the optimal solution on A[0 .. n-2]
– If yes, the answer is what??

> A[n-1] + optimal solution on A[0 .. n-2] need not be a sub-array...

Max Sub-array Sum

n-1

> Apply dynamic programming...
– need to find a way to write the solution in terms of sub-problems
– try the same approach as before...

> Q: does the opt solution include the last element?
– If not, the answer is the optimal solution on A[0 .. n-2]
– If yes, the answer is what??

> A[n-1] + optimal solution on A[0 .. n-2] ending at n-2

Max Sub-array Sum

n-1

> Apply dynamic programming...
– need to find a way to write the solution in terms of sub-problems
– try the same approach as before...

> Q: does the opt solution include the last element?
– If not, the answer is the optimal solution on A[0 .. n-2]
– If yes, the answer is what??

> A[n-1] + optimal solution ending at n-2
– looks like we need two types of sub-problems:

1. optimal solution over A[0 .. j-1]
2. optimal solution over A[0 .. j-1] that end at A[j-1]

Max Sub-array Sum n-1vs

> Looks like we need two types of sub-problems:
1. optimal solution over A[0 .. j-1]
2. optimal solution over A[0 .. j-1] that end at A[j-1]

> Sufficient to just solve sub-problems of type 2
– every solution has to end somewhere
– optimal value = max(opt value over A[0 .. j-1]) for j = 1 .. n

> Focus on just solving problems of type 2...

Max Sub-array Sum

> Problem 2: Given an array A of integers,
find max of A[i] + ... + A[n-1] over all 0 ≤ i ≤ n

> Apply dynamic programming...
> Find a way to write the solution in terms of sub-problems...

> Q: does the opt solution include the last element?
– if no, then opt value = 0

> the only interval not including A[n-1] is the empty interval
– if yes, then opt value = A[n-1] + opt value ending at n-2

> every sub-array ending at n-1 is a subarray ending at n-2 + A[n-1]

Max Sub-array Sum

optimal substructure

only sub-arrays ending at n-1

> Q: does the opt solution include the last element?
– if yes, then opt value = A[n-1] + opt value ending at n-2

> every sub-array ending at n-1 is a subarray ending at n-2 + A[n-1]
– if no, then opt value = 0

> the only interval not including A[n-1] is the empty interval

A = [31, -41, 59, 26, -53, 58, 97]

max (A[i] + ... + A[n-1]) with i ≤ n-2
= max (A[i] + ... + A[n-2] + A[n-1]) with i ≤ n-2
= max (A[i] + ... + A[n-2]) with i ≤ n-2 + A[n-1]

Max Sub-array Sum

> Apply dynamic programming for opt sub-array ending at n-1...
1. Can find opt value for A[0, ..., n-1] using only A[0, .., j-1] with j < n.
2. Need opt value for A[0, ..., j-1] for each j = 1 ,..., n.
3. Solve each of those starting with j = 1.

> opt value for A[0 .. 0] = max(0, A[0])
> opt value for A[0 .. j-1] = max(0, opt value for A[0 .. j-2] + A[j-1])

> Only n sub-problems
> Can solve all in O(n) time

Max Sub-array Sum

> Solve all sub-problems of type 2 in O(n) time
> Take maximum of these to solve original problem

> Better yet:
– keep track of maximum as you go
– no longer need to store entire array: just previous element and max so far

> Erasing your tracks will make you look smarter
– solutions on web do not mention dynamic programming

Max Sub-array Sum

> Weighted Interval Scheduling
> Max Sub-array Sum
> Document Layout in TeX
> Optimal Breakout Trades

Outline for Today

> TeX is a document typesetting program
– non-WYSIWYG
– takes as input a description of the document
– outputs a PDF (or similar) with the actual document

> Still widely used in mathematics and theoretical CS
– mainly due to how well it formats equations
– (partly just inertia)
– generally considered to produce beautiful documents

Paragraph Layout in TeX

> TeX is a document typesetting program
– non-WYSIWYG
– takes as input a description of the document
– outputs a PDF (or similar) with the actual document

> TeX program is one of the largest bug-free programs ever written
– author, Don Knuth, is undoubtedly one of the best programmers in history
– what counts as “bug-free”, however, is a matter of debate...

Paragraph Layout in TeX

> We will discuss paragraph layout
– i.e., splitting words into lines
– can choose to stretch or shrink

space between words on a line
– can break words using ”-”

> TeX uses a similar approach to break blocks into pages

Paragraph Layout in TeX

> Choose where splits should go between words to create lines
– exponentially many options: 2n-1, on a paragraph with n words

> paragraphs with, e.g., 100 words would already be problematic

> Do so in order to minimize “badness” of the paragraph
– overfull / underfull lines are infinitely bad
– otherwise, badness = 100 (required stretch / shrink)^3
– badness of paragraph is (essentially) sum of line badness
– breaking between words with “-” has an extra penalty
– other special cases... (e.g., last line is not stretched)

> again, dynamic programming accommodates them without difficulty

Paragraph Layout in TeX

> Apply dynamic programming...
– need to find a way to write the solution in terms of sub-problems
– try the same approach as before...

> Q: does the opt solution include the last word?
– obviously it does
– the last word is always on the last time
– need a better question...

> Q: What does the last line look like in opt solution?

Paragraph Layout in TeX

> Apply dynamic programming...
– need to find a way to write the solution in terms of sub-problems
– try thinking about the last line in the solution...

> Q: What does the last line look like in opt solution?
– we know where it ends (at the last word)
– only interesting question is where it starts
– if it starts at word j, then cost is

(opt value for words 1, ..., j-1) +
badness of line with words j, ..., n

– (actually only need to consider j up until last line becomes overfull)

Paragraph Layout in TeX

> Apply dynamic programming...
– need to find a way to write the solution in terms of sub-problems
– try thinking about the last line in the solution...

> Q: where does the last line start?
– opt value for words 1, ..., n =

max over j ≤ n of
(opt value for words 1, ..., j-1) +
badness of line with words j, ..., n

– sub-problems again correspond to prefixes 1, ..., j-1
> only n of them

– BUT we need more than O(1) time to compute the formula

Paragraph Layout in TeX

same optimal substructure as previous...
badness of line with j, ..., n
is common to all that split here
so opt must be opt of those too

> Apply dynamic programming...
1. Can find opt value for 1, .., n using only prefixes 1, ..., j-1 with j ≤ n.
2. Need opt value for 1, ..., k for each k = 1, ..., n.
3. Solve each of those starting with k = 1.

> opt value for 1 = badness of line [word 1]
> opt value for 1, .., k = max over j ≤ k

(opt value for 1, ..., j-1) + (badness of line [word j, ..., word k])

> Potentially O(n) per sub-problem, so O(n2) time
– in reality, there is a bound of, say, 40 words on a line
– practical performance is O(n) [could be WYSIWYG today]

Paragraph Layout in TeX

> Weighted Interval Scheduling
> Max Sub-array Sum
> Document Layout in TeX
> Optimal Breakout Trades

Outline for Today

> The usual advice is to buy low and sell high,
but some trading strategies actually do the opposite!

> Goal: Figure out if that has any chance of being profitable.

> Problem: Given future prices, find the maximum profit that can
be achieved from trades that only buy on highs and sell on lows.
– can only buy when price is highest in 11 weeks
– can only sell when price is lowest in 2 weeks
– short selling allowed with reverse limits

Optimal Breakout Trades

Optimal Breakout Trades

Crude	oil	futures	prices,	2015–16

> Exponentially many possible sequences of trades
– brute force would not be feasible

> Apply dynamic programming...
– to find optimal sub-structure, consider the last trade

Optimal Breakout Trades

> Apply dynamic programming...
– to find optimal sub-structure, consider the last trade

> Q: What does the last trade look like in opt solution?
– if it does not end by selling on the last day,

then opt solution is the same as on prices 1 .. n-1
– if it does end by selling on the last day,

then opt value depends on where it buys...

Optimal Breakout Trades

> Apply dynamic programming...
– to find optimal sub-structure, consider the last trade

> Q: What does the last trade look like in opt solution?
– if it does not end by selling on the last day,

then opt solution is the same as on prices 1 .. n-1
– if it buys at time j and sells on the last day, then opt value =

(opt value on 1 ... j-1) x (1 + percent change from j to n)
– if it sells on the last day, then opt value = max over j < n of

(opt value on 1 ... j-1) x (1 + percent change from j to n)

Optimal Breakout Trades

optimal substructure
(all are

multiplied by the
same number)

> Apply dynamic programming...
1. Can find opt value for 1, .., n using only prefixes 1, ..., j with j < n.
2. Need opt value for 1, ..., k for each k = 1, ..., n.
3. Solve each of those starting with k = 1.

> opt value for 1 = 1 (can’t sell until we buy)
> opt value for 1, .., k = max(

opt value for 1, ..., k-1,
max over j < k of (opt value for 1, ..., j-1) x (1 + percent change from j to k)

> Potentially O(n) per sub-problem, so O(n2) time
– can optimize further, but still O(n2) in worst case

Optimal Breakout Trades

