
CSE 417
Dynamic Programming (pt 1)
Definition, History, & Simple Examples

> HW4 is posted: due in one week
– start early!

Reminders

> Motivation & Definition
> Robot Example
> History
> Robot Example 2
> Extensions

Outline for Today

Dynamic programming is...

> most useful algorithm design technique in practice (IMO)
> more robust to problem changes than techniques discussed so far
> usually easiest to analyze for run-time performance
> often easier to implement

– some could be implemented in Excel

> ubiquitous in CS
– more so than greedy or divide & conquer
– applications are large in number and importance

Dynamic Programming: Motivation

> compilers
– optimal code generation

> machine learning
– speech recognition
– parsing natural language

> databases
– query optimization

> graphics
– optimal polygon triangulation

Dynamic Programming: Applications

> networking
– routing

> practical applications:
– spell checking
– file comparison
– document layout
– pattern matching

> many, many more...

Sub-problems

Enumeration
Strategy

Dynamic Programming vs
Divide & Conquer

Dynamic Programming

any subsets of input
– we chose which ones
– (not all subsets)

Divide & Conquer

split data in parts

recursion

Both	apply	“optimal	substructure”:
using	solution	on	sub-problems	to	solve	whole	problem

Sub-problems

Enumeration
Strategy

Dynamic Programming vs
Divide & Conquer

Dynamic Programming

any subsets of input
– we chose which ones

solve them all
– often record in a table

Divide & Conquer

split data in parts

recursion

Dynamic programming approach...

> describe solution in terms of solution to sub-problems
– like D&C but consider more general subsets of data

> solve every sub-problem we need
– once only!

> Approach is efficient if there aren’t too many sub-problems
– often not trying to get from O(n2) to O(n log n) as in D&C...

trying to get from impossible to possible
– number of sub-problems could be large but want nO(1)

Dynamic Programming: Definition

> Motivation & Definition
> Robot Example
> History
> Robot Example 2
> Extensions

Outline for Today

> Problem: Given an n x m grid where some squares contain rocks,
find a path for the robot to get from (n,m) to the exit at (1,1),
where the robot only has to move down or left.

Example: Broken Robot Path

> Problem: Given an n x m grid where some squares contain rocks,
find a path for the robot to get from (n,m) to the exit at (1,1),
where the robot only has to move down or left.

> Problem is too easy so far...
– Q: how do you solve it efficiently?

Example: Broken Robot Path

> Problem: Given an n x m grid where some squares contain rocks,
find a path for the robot to get from (n,m) to the exit at (1,1),
where the robot only has to move down or left.

> Problem is too easy so far...
– a shortest path problem

> Even easier interview question: no rocks
– problem was to count the number of paths
– can be solved by dynamic programming, but...

Example: Broken Robot Path

> Problem: Given an n x m grid where squares have rocks or bitcoins,
find a path for the robot to get from (n,m) to the exit at (1,1), where
the robot only has to move down or left, maximizing the coins found!

Example: Bitcoin Mining Broken Robot

now	an	optimization	problem

> Q: What are the sub-problems?
– have to choose these for D&C or DP

Example: Bitcoin Mining Broken Robot

Divide & Conquer would
split the input into pieces...

Doesn’t seem useful...
> e.g., right box finds opt

path ending at (5,1)
> solution does not use that

> Q: What are the sub-problems?
– DP allows more general choices

Example: Bitcoin Mining Broken Robot

both find paths to (1,1)
but with different starts

These are useful...
> every path from (n,m) steps

through (n-1,m) or (n,m-1)
> opt must do one or other

> Q: What are the sub-problems?
– DP allows more general choices

Example: Bitcoin Mining Broken Robot

Optimal path from (n,m) either
goes through (n-1,m) or (n,m-1).

max coin collected from (n,m)
= max(max coin from (n-1,m),

max coin from (n,m-1))
+ 1 if coin at (n,m)

(or = 0 if rocks at (n,m))

> Q: What are the sub-problems?
> A: Choice of starting point (top-right of rectangle)

– all rectangles with bottom-left at (1,1)
– same formula applies to find opt at any (i,j)

> Q: How many sub-problems are there?
> A: nm

– running time will be nm x time per sub-problem

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

> Algorithm:
– allocate a table A with n x m entries
– record the optimal solution in each spot
– fill the table in from bottom-left to top-right

Example: Bitcoin Mining Broken Robot

0

no solution below, so
opt = left + 1 if coin here

> Q: What are the sub-problems?
> A: Choice of starting point

> Algorithm:
– allocate a table A with n x m entries
– record the optimal solution in each spot
– fill the table in from bottom-left to top-right

Example: Bitcoin Mining Broken Robot

0 0 0

no solution below, so
opt = left + 1 if coin here

> Q: What are the sub-problems?
> A: Choice of starting point

> Algorithm:
– allocate a table A with n x m entries
– record the optimal solution in each spot
– fill the table in from bottom-left to top-right

Example: Bitcoin Mining Broken Robot

0 0 0 1 1 1 1

no solution below, so
opt = left + 1 if coin here

> Q: What are the sub-problems?
> A: Choice of starting point

> Algorithm:
– allocate a table A with n x m entries
– record the optimal solution in each spot
– fill the table in from bottom-left to top-right

Example: Bitcoin Mining Broken Robot

0 0 0 1 1 1 1 2 2

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

0 0 0 1 1 1 1 2 2
no solution to left, so
opt = below + 1 if coin here

> Q: What are the sub-problems?
> A: Choice of starting point

> Algorithm:
– allocate a table A with n x m entries
– record the optimal solution in each spot
– fill the table in from bottom-left to top-right

> usually fill in the special (edge) cases first.
> many possible orders (row at a time, col at a time, diagonals, etc.)
> only rule is bottom & left must be filled in first

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0 0 0 1 1 1 1 2 2

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0 0 0 1 1 1 1 2 2

opt here = max(opt left, opt below)
+ 1 if coin here

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

0
0

0
0 1 1 1 1 2 2

opt here = max(opt left, opt below)
+ 1 if coin here

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

0
0

0
0

1
1 1 1 1 2 2

opt here = max(opt left, opt below)
+ 1 if coin here

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

0
0

0
0

1
1 1 1 1 2 2

opt here = max(opt left, opt below)
+ 1 if coin here

opt here = 0 if rocks (or maybe -1?)

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

0
0

0
0

1
1

0
1 1 1 2 2

opt here = max(opt left, opt below)
+ 1 if coin here

opt here = 0 if rocks (or maybe -1?)

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

0
0

0
0

1
1

0
1 1 1 2 2

opt here = max(opt left, opt below)
+ 1 if coin here

opt here = 0 if rocks (or maybe -1?)

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

0
0

0
0

1
1

0
1

1
1 1 2 2

opt here = max(opt left, opt below)
+ 1 if coin here

opt here = 0 if rocks (or maybe -1?)

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

0
0

0
0

1
1

0
1

1
1 1 2 2

opt here = max(opt left, opt below)
+ 1 if coin here

opt here = 0 if rocks (or maybe -1?)

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

0
0

0
0

1
1

0
1

1
1

0
1 2 2

opt here = max(opt left, opt below)
+ 1 if coin here

opt here = 0 if rocks (or maybe -1?)

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

0
0

0
0

1
1

0
1

1
1

0
1 2 2

opt here = max(opt left, opt below)
+ 1 if coin here

opt here = 0 if rocks (or maybe -1?)

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

0
0

0
0

1
1

0
1

1
1

0
1

2
2

2
2

opt here = max(opt left, opt below)
+ 1 if coin here

opt here = 0 if rocks (or maybe -1?)

> Q: What are the sub-problems?
> A: Choice of starting point

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

2
2
2
0
0
0

2
0
2
0
0
0

2
2
2
1
1
1

2
2
0
1
0
1

3
3
1
1
1
1

3
3
1
1
0
1

3
3
1
0
2
2

3
3
2
2
2
2

opt here = max(opt left, opt below)
+ 1 if coin here

opt here = 0 if rocks (or maybe -1?)

> Q: What are the sub-problems?
> A: Choice of starting point

> Running time is O(1) per entry

> Total running time is O(nm)

Example: Bitcoin Mining Broken Robot

2
1
1
0
0
0

2
2
2
0
0
0

2
0
2
0
0
0

2
2
2
1
1
1

2
2
0
1
0
1

3
3
1
1
1
1

3
3
1
1
0
1

3
3
1
0
2
2

3
3
2
2
2
2opt here = max(opt left, opt below)

+ 1 if coin here
opt here = 0 if rocks

int[][] A = new int[n+1][m+1];

A[1][1] = 0;

for (int i = 2; i <= n; i++) {
if (B[i][1] == COIN)
A[i][1] = A[i-1][1] + 1;

else if (B[i][1] == ROCK)
A[i][1] = -Infinity;

else
A[i][1] = A[i-1][1];

}

// ... fill in A[1][j] similarly ...

Example: Bitcoin Mining Broken Robot

for (int i = 2; i <= n; i++) {
for (int j = 2; j <= m; j++) {
if (B[i][j] == COIN)
A[i][j] = 1 +

max(A[i-1][j], A[i][j-1]);
else if (B[i][j] == ROCK)
A[i][j] = -Infinity;

else
A[i][j] = max(A[i-1][j], A[i][j-1]);

}
}

return A[n][m];

> Motivation & Definition
> Robot Example
> History
> Robot Example 2
> Extensions

Outline for Today

> programming : program :: scheduling : schedule
– think of a program for a concert
– choice of what to play and when to play it (not just a schedule)
– same use as “linear programming”, “convex programming”, etc.

> dynamic means relating to time
– inventor (Bellman) was looking at problems where index was time

> e.g., our price data in HW4
– BUT time plays no role in modern user of the word

Dynamic Programming: Etimology

> Technique invented by Richard Bellman in the 1950s
– we will see the algorithm when we discuss network flows...

> At the time, Secretary of Defense did not like math research,
so Bellman chose a name that did not sound like math
– ”it is impossible to use the word ‘dynamic’ in a pejorative sense”
– “[dynamic programming] was a name not even a Congressman could object to
– (both quotes from Bellman’s autobiography)

Dynamic Programming: History

> Motivation & Definition
> Robot Example
> History
> Robot Example 2
> Extensions

Outline for Today

> Robot is tired of these rocks in his way!
– he wants bitcoin!!!

> Robot buys a bomb he can use to blast rocks
– only has one bomb
– has to choose carefully where to use it...

Example: Bitcoin Mining Bomber Robot

> Problem: Given an n x m grid where squares have rocks or bitcoins, find a
path for the robot to get from (n,m) to the exit at (1,1), where the robot only
has to move down or left or blast down or blast left (one time only),
maximizing the coins found.

Example: Bitcoin Mining Bomber Robot

> Problem: Given an n x m grid where squares have rocks or bitcoins, find a
path for the robot to get from (n,m) to the exit at (1,1), where the robot only
has to move down or left or blast down or blast left (one time only),
maximizing the coins found.

Example: Bitcoin Mining Bomber Robot

> Problem: Given an n x m grid where squares have rocks or bitcoins, find a
path for the robot to get from (n,m) to the exit at (1,1), where the robot only
has to move down or left or blast down or blast left (one time only),
maximizing the coins found.

Example: Bitcoin Mining Bomber Robot

> Q: What are the sub-problems?
> A: Choice of starting point &

whether he still has bomb

> Can compute this using two tables:
– one for opt solution with no bomb (saw before)
– one for opt solution with one bomb left

> opt at (i,j) with bomb = max(
opt at (i-1,j) with bomb, opt at (i,j-1) with bomb,
opt at (i-1,j) using bomb, opt at (i,j-1) using bomb)

> opt at (i,j) using bomb =
formula for opt at (i,j) without bomb ignoring rocks there

Example: Bitcoin Mining Bomber Robot

BUT re-compute
from down & left
ignoring any rock here
(still O(1) time to compute)

> Q: What are the sub-problems?
> A: Choice of starting point &

whether he still has bomb

Example: Bitcoin Mining Bomber Robot

2
1
1
0
0
0

2
2
2
0
0
0

2
0
2
0
0
0

2
2
2
1
1
1

2
2
0
1
0
1

3
3
2
1
1
1

3
3
2
1
0
1

3
3
2
0
2
2

3
3
2
2
2
2

can move within one table
or jump to the other table...

> As in the example, it is often easy to
accommodate small changes to problem
– more so than greedy or divide & conquer

> Only doubles the number of sub-problems here
– you will see similar situations in future HWs

Example: Bitcoin Mining Bomber Robot

> Motivation & Definition
> Robot Example
> History
> Robot Example 2
> Extensions

Outline for Today

> It is also possible to count solutions.

> Instead of storing just opt achievable in A[i][j],
store the opt achievable and the number of solutions achieving it
– if left is better, then #opt solutions is #opt solutions from left
– if down is better, then #opt solutions is #opt solutions from down
– if both are equal, then #opt solutions is...

(#opt solutions from left) + (#opt solutions from down)

> Similar approach works for most DP algorithms

Dyn Programming: Counting Solutions

> Previous algorithm computed value of optimal solution
BUT what if we want the solution that is optimal?

> Can get that from the table as well
– walk from the end back to the beginning
– follow along choices that achieve the max score

Dyn Programming: Finding Solutions

> Get optimal solution from table of optimal values...

Dyn Programming: Finding Solutions

2
1
1
0
0
0

2
2
2
0
0
0

2
0
2
0
0
0

2
2
2
1
1
1

2
2
0
1
0
1

3
3
2
1
1
1

3
3
2
1
0
1

3
3
2
0
2
2

3
3
2
2
2
2

Table says 3 is possible moving
either down or right

Let’s go down...

> Get optimal solution from table of optimal values...

Dyn Programming: Finding Solutions

2
1
1
0
0
0

2
2
2
0
0
0

2
0
2
0
0
0

2
2
2
1
1
1

2
2
0
1
0
1

3
3
2
1
1
1

3
3
2
1
0
1

3
3
2
0
2
2

3
3
2
2
2
2

Table says we must go left to get 3...

> Get optimal solution from table of optimal values...

Dyn Programming: Finding Solutions

2
1
1
0
0
0

2
2
2
0
0
0

2
0
2
0
0
0

2
2
2
1
1
1

2
2
0
1
0
1

3
3
2
1
1
1

3
3
2
1
0
1

3
3
2
0
2
2

3
3
2
2
2
2

Now neither solution achieves 3? What?

There’s a coin at this spot!
Pick it up and look for 2 more, not 3 more.

> Get optimal solution from table of optimal values...

Dyn Programming: Finding Solutions

2
1
1
0
0
0

2
2
2
0
0
0

2
0
2
0
0
0

2
2
2
1
1
1

2
2
0
1
0
1

3
3
2
1
1
1

3
3
2
1
0
1

3
3
2
0
2
2

3
3
2
2
2
2

> Previous algorithm computed value of optimal solution
BUT what if we want the solution that is optimal?

> Can get that from the table as well
– walk from the end back to the beginning
– follow along choices that achieve the max score

> Alternatively, keep track of how you got the value too
– e.g., in robot, record if max was from down or left
– requires extra space in the table

Dyn Programming: Finding Solutions

