CSE 417 Dynamic Programming (pt 1) Definition, History, \& Simple Examples

Reminders

> HW4 is posted: due in one week

- start early!

Outline for Today

> Motivation \& Definition
> Robot Example
> History
> Robot Example 2
> Extensions

Dynamic Programming: Motivation

Dynamic programming is...
$>$ most useful algorithm design technique in practice (IMO)
> more robust to problem changes than techniques discussed so far
> usually easiest to analyze for run-time performance
> often easier to implement

- some could be implemented in Excel
$>$ ubiquitous in CS
- more so than greedy or divide \& conquer
- applications are large in number and importance

Dynamic Programming: Applications

> compilers

- optimal code generation
> machine learning
- speech recognition
- parsing natural language
> databases
- query optimization
> graphics
- optimal polygon triangulation
> networking
- routing
> practical applications:
- spell checking
- file comparison
- document layout
- pattern matching
> many, many more...

Dynamic Programming vs Divide \& Conquer

Divide \& Conquer

Dynamic Programming

Dynamic Programming vs Divide \& Conquer

Divide \& Conquer

Sub-problems split data in parts
Enumeration recursion
Strategy

Dynamic Programming
any subsets of input

- we chose which ones
solve them all
- often record in a table

Dynamic Programming: Definition

Dynamic programming approach...
> describe solution in terms of solution to sub-problems

- like D\&C but consider more general subsets of data
> solve every sub-problem we need
- once only!
> Approach is efficient if there aren't too many sub-problems
- often not trying to get from $O\left(n^{2}\right)$ to $O(n \log n)$ as in D\&C... trying to get from impossible to possible
- number of sub-problems could be large but want $\mathrm{n}^{\mathrm{O}(1)}$

Outline for Today

> Motivation \& Definition
> Robot Example
> History
> Robot Example 2
> Extensions

Example: Broken Robot Path

> Problem: Given an $n \times m$ grid where some squares contain rocks, find a path for the robot to get from (n, m) to the exit at $(1,1)$, where the robot only has to move down or left.

Example: Broken Robot Path

> Problem: Given an $\mathrm{n} \times \mathrm{m}$ grid where some squares contain rocks, find a path for the robot to get from (n, m) to the exit at $(1,1)$, where the robot only has to move down or left.
> Problem is too easy so far...

- Q: how do you solve it efficiently?

Example: Broken Robot Path

> Problem: Given an $\mathrm{n} \times \mathrm{m}$ grid where some squares contain rocks, find a path for the robot to get from (n, m) to the exit at $(1,1)$, where the robot only has to move down or left.
> Problem is too easy so far...

- a shortest path problem
> Even easier interview question: no rocks
- problem was to count the number of paths
- can be solved by dynamic programming, but...

Example: Bitcoin Mining Broken Robot

> Problem: Given an $\mathrm{n} \times \mathrm{m}$ grid where squares have rocks or bitcoins, find a path for the robot to get from (n, m) to the exit at $(1,1)$, where the robot only has to move down or left, maximizing the coins found!

now an optimization problem

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?

- have to choose these for D\&C or DP

Divide \& Conquer would split the input into pieces...

Doesn't seem useful...
> e.g., right box finds opt path ending at $(5,1)$
$>$ solution does not use that

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?

- DP allows more general choices
both find paths to (1,1) but with different starts

These are useful...
$>$ every path from (n, m) steps through ($\mathrm{n}-1, \mathrm{~m}$) or ($\mathrm{n}, \mathrm{m}-1$)
> opt must do one or other

Example: Bitcoin Mining Broken Robot

$>$ Q: What are the sub-problems?

- DP allows more general choices

Optimal path from (n,m) either goes through ($n-1, m$) or ($n, m-1$).
max coin collected from (n, m)
$=\max (\max$ coin from $(\mathrm{n}-1, \mathrm{~m})$,
max coin from ($\mathrm{n}, \mathrm{m}-1$))
+1 if coin at (n, m)
(or = 0 if rocks at (n, m))

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point (top-right of rectangle)

- all rectangles with bottom-left at $(1,1)$
- same formula applies to find opt at any (i,j)
> Q: How many sub-problems are there?
> A: nm
- running time will be $n m \times$ time per sub-problem

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point
> Algorithm:

- allocate a table A with $n \times m$ entries
- record the optimal solution in each spot
- fill the table in from bottom-left to top-right

no solution below, so opt = left + 1 if coin here

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point
> Algorithm:

- allocate a table A with $n \times m$ entries
- record the optimal solution in each spot
- fill the table in from bottom-left to top-right

no solution below, so opt = left + 1 if coin here

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point
> Algorithm:

- allocate a table A with $n \times m$ entries
- record the optimal solution in each spot
- fill the table in from bottom-left to top-right

no solution below, so opt = left + 1 if coin here

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point
> Algorithm:

- allocate a table A with $n \times m$ entries
- record the optimal solution in each spot

- fill the table in from bottom-left to top-right

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point
no solution to left, so opt = below + 1 if coin here

w

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point
> Algorithm:

- allocate a table A with $n \times m$ entries
- record the optimal solution in each spot

2									
1	St				(3)				
1	(3)		St						
0							5		
0			50			St			
0	0	0	1	1	1	1	2		2

- fill the table in from bottom-left to top-right
$>$ usually fill in the special (edge) cases first.
$>$ many possible orders (row at a time, col at a time, diagonals, etc.)
> only rule is bottom \& left must be filled in first

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2									
1	St				(3)				
1	(3)		St						
0									
0				5		St			
0	0	0	1	1	1	1	2		2

opt here $=\max (o p t$ left, opt below)

+ 1 if coin here

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2									
1	S				(3)				
1	(3)		St						
0							5		
0	0	0	St			St			
	3		1	1	1	1	2		2

opt here $=\max (o p t$ left, opt below)

+ 1 if coin here

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2									
1	5				(3)				
1	(3)		St						
0						ct			
0	0	0	1	St		大			
	0		1	1	1	1	2		2

opt here $=\max (o p t$ left, opt below)

+ 1 if coin here

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2									
1		大			(3)				
1	(3)			St					
0									
0	0	0	1	b		,			
0	0	0	1	1	1	1	2	2	2

opt here $=\max (o p t$ left, opt below)

+ 1 if coin here
opt here $=0$ if rocks (or maybe -1?)

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2								
1		$S E$			Ba			
1	B B			St				
0							St	
0	0	0	1	E		St		
0	0	0	1	1	1	1	2	2

opt here $=\max (o p t$ left, opt below)

+ 1 if coin here
opt here $=0$ if rocks (or maybe -1?)

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2									
1	¢				(3)				
1	(3)		St						
0									
0	0	0	1	0		St			
0	0	0	1	1	1	1	2		2

opt here $=\max (o p t$ left, opt below)

+ 1 if coin here
opt here $=0$ if rocks (or maybe -1?)

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2								
1		$S E$			3			
1	B B			5				
0								
0	0	0	1	0	1	E		
0	0	0	1	1	1	1	2	2

opt here = max(opt left, opt below)

+ 1 if coin here
opt here $=0$ if rocks (or maybe -1?)

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2									
1	St				(3)				
1	(3)			K					
0						50.			
0	0	0	1	0	1	c			
0	0	\bigcirc	1	1	1	1	2		2

opt here $=\max (o p t$ left, opt below)

+ 1 if coin here
opt here $=0$ if rocks (or maybe -1?)

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2									
1	St				B				
1	(3)			5					
0						St			
0	0	0	1	0	1		0		
0	0	0	1	1	1		1	2	2

opt here $=\max (o p t$ left, opt below)

+ 1 if coin here
opt here $=0$ if rocks (or maybe -1?)

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2								
1		$S E$			3			
1	B B			5				
0								
0	0	0	1	0	1	0		
0	0	0	1	1	1	1	2	2

opt here $=\max (o p t$ left, opt below)

+ 1 if coin here
opt here $=0$ if rocks (or maybe -1?)

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2								
1	(t)				(3)			
1	(3)		St					
0								
0	0	0	1	0	1	0	2	2
0	0	0	1	1	1	1	2	2

opt here $=\max (o p t ~ l e f t, ~ o p t ~ b e l o w) ~$

+ 1 if coin here
opt here $=0$ if rocks (or maybe -1?)

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point

2	2	2	2	2	3	3	3	3
1	2	0	2	2	3	3	3	3
1	2	2	2	0	1	1	1	2
0	0	0	1	1	1	1	0	2
0	0	0	1	0	1	0	2	2
0	0	0	1	1	1	1	2	2

opt here $=\max (o p t$ left, opt below)

+ 1 if coin here
opt here $=0$ if rocks (or maybe -1?)

Example: Bitcoin Mining Broken Robot

> Q: What are the sub-problems?
> A: Choice of starting point
> Running time is $\mathrm{O}(1)$ per entry

$$
\begin{aligned}
\text { opt here = } & \text { max(opt left, opt below) } \\
& +1 \text { if coin here } \\
\text { opt here }= & 0 \text { if rocks }
\end{aligned}
$$

2	2	2	2	2	3	3	3	3
1	2	0	2	2	3	3	3	3
1	2	2	2	0	1	1	1	2
0	0	0	1	1	1	1	0	2
0	0	0	1	0	1	0	2	2
0	0	0	1	1	1	1	2	2

$>$ Total running time is $\mathrm{O}(\mathrm{nm})$

Example: Bitcoin Mining Broken Robot

```
int[][] A = new int[n+1][m+1];
A[1][1] = 0;
for (int i = 2; i <= n; i++) {
    if (B[i][1] == COIN)
        A[i][1] = A[i-1][1] + 1;
    else if (B[i][1] == ROCK)
        A[i][1] = -Infinity;
    else
        A[i][1] = A[i-1][1];
}
// ... fill in A[1][j] similarly ... return A[n][m];
```

```
for (int i = 2; i <= n; i++) {
        for (int j = 2; j <= m; j++) {
            if (B[i][j] == COIN)
            A[i][j] = 1 +
                    max(A[i-1][j], A[i][j-1]);
            else if (B[i][j] == ROCK)
            A[i][j] = -Infinity;
            else
            A[i][j] = max(A[i-1][j], A[i][j-1]);
    }
}

\section*{Outline for Today}
> Motivation \& Definition
> Robot Example
> History
> Robot Example 2
> Extensions


\section*{Dynamic Programming: Etimology}
> programming: program :: scheduling: schedule
- think of a program for a concert
- choice of what to play and when to play it (not just a schedule)
- same use as "linear programming", "convex programming", etc.
> dynamic means relating to time
- inventor (Bellman) was looking at problems where index was time > e.g., our price data in HW4
- BUT time plays no role in modern user of the word

\section*{Dynamic Programming: History}
> Technique invented by Richard Bellman in the 1950s
- we will see the algorithm when we discuss network flows...
> At the time, Secretary of Defense did not like math research, so Bellman chose a name that did not sound like math
- "it is impossible to use the word 'dynamic' in a pejorative sense"
- "[dynamic programming] was a name not even a Congressman could object to
- (both quotes from Bellman's autobiography)

\section*{Outline for Today}
> Motivation \& Definition
> Robot Example
> History
> Robot Example 2

> Extensions


\section*{Example: Bitcoin Mining Bomber Robot}
> Robot is tired of these rocks in his way!
- he wants bitcoin!!!
\(>\) Robot buys a bomb he can use to blast rocks
- only has one bomb
- has to choose carefully where to use it...


\section*{Example: Bitcoin Mining Bomber Robot}
> Problem: Given an \(\mathrm{n} \times \mathrm{m}\) grid where squares have rocks or bitcoins, find a path for the robot to get from \((n, m)\) to the exit at \((1,1)\), where the robot only has to move down or left or blast down or blast left (one time only), maximizing the coins found.


\section*{Example: Bitcoin Mining Bomber Robot}
> Problem: Given an \(\mathrm{n} \times \mathrm{m}\) grid where squares have rocks or bitcoins, find a path for the robot to get from \((n, m)\) to the exit at \((1,1)\), where the robot only has to move down or left or blast down or blast left (one time only), maximizing the coins found.


\section*{Example: Bitcoin Mining Bomber Robot}
> Problem: Given an \(\mathrm{n} \times \mathrm{m}\) grid where squares have rocks or bitcoins, find a path for the robot to get from \((n, m)\) to the exit at \((1,1)\), where the robot only has to move down or left or blast down or blast left (one time only), maximizing the coins found.


\section*{Example: Bitcoin Mining Bomber Robot}
> Q: What are the sub-problems?
> A: Choice of starting point \& whether he still has bomb
> Can compute this using two tables:
- one for opt solution with no bomb (saw before)
- one for opt solution with one bomb left

\(>\) opt at \((i, j)\) with bomb \(=\max (\)
opt at (i-1,j) with bomb, opt at (i,j-1) with bomb, opt at ( \(\mathrm{i}-1, j\) ) using bomb, opt at ( \(\mathrm{i}, \mathrm{j}-1\) ) using bomb)
\(>\) opt at \((i, j)\) using bomb =
formula for opt at (i,j) without bomb ignoring rocks there

\section*{Example: Bitcoin Mining Bomber Robot}
\(>\) Q: What are the sub-problems?
> A: Choice of starting point \& whether he still has bomb

BUT re-compute from down \& left ignoring any rock here (still O(1) time to compute)


\section*{Example: Bitcoin Mining Bomber Robot}
> As in the example, it is often easy to accommodate small changes to problem
- more so than greedy or divide \& conquer
> Only doubles the number of sub-problems here
- you will see similar situations in future HWs


\section*{Outline for Today}
> Motivation \& Definition
> Robot Example
> History
> Robot Example 2
> Extensions


\section*{Dyn Programming: Counting Solutions}
> It is also possible to count solutions.
> Instead of storing just opt achievable in A[i][j], store the opt achievable and the number of solutions achieving it
- if left is better, then \#opt solutions is \#opt solutions from left
- if down is better, then \#opt solutions is \#opt solutions from down
- if both are equal, then \#opt solutions is...
(\#opt solutions from left) + (\#opt solutions from down)
> Similar approach works for most DP algorithms

\section*{Dyn Programming: Finding Solutions}
> Previous algorithm computed value of optimal solution BUT what if we want the solution that is optimal?
> Can get that from the table as well
- walk from the end back to the beginning
- follow along choices that achieve the max score

\section*{Dyn Programming: Finding Solutions}
> Get optimal solution from table of optimal values...
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\
\hline 1 & 2 & 0 & 2 & 2 & 3 & 3 & 3 & 3 \\
\hline 1 & 2 & 2 & 2 & 0 & 2 & 2 & 2 & 2 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 2 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & 2 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{l} 
Table says 3 is possible moving \\
either down or right
\end{tabular}\(\quad\) Let's go down...

\section*{Dyn Programming: Finding Solutions}
> Get optimal solution from table of optimal values...
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 31 \\
\hline 1 & 2 & 0 & 2 & 2 & 3 & 3 & 3 & 3 \\
\hline 1 & 2 & 2 & 2 & 0 & 2 & 2 & 2 & 2 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 2 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & 2 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline
\end{tabular}

Table says we must go left to get 3 ...
W

\section*{Dyn Programming: Finding Solutions}
> Get optimal solution from table of optimal values...
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\
\hline 1 & 2 & 0 & 2 & 2 & 3 & 3 & 3 & 3 \\
\hline 1 & 2 & 2 & 2 & 0 & 2 & 2 & 2 & 2 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 2 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & 2 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline
\end{tabular}

There's a coin at this spot!
Pick it up and look for 2 more, not 3 more.
W

\section*{Dyn Programming: Finding Solutions}
> Get optimal solution from table of optimal values...
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\
\hline 1 & 2 & 0 & 2 & 2 & 3 & 3 & 3 & 3 \\
\hline 1 & 2 & 2 & 2 & 0 & 2 & 2 & 2 & 2 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 2 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & 2 \\
\hline 0 & 0 & 0 & 1 & -1 & 1 & 2 & 2 \\
\hline
\end{tabular}

\section*{Dyn Programming: Finding Solutions}
> Previous algorithm computed value of optimal solution BUT what if we want the solution that is optimal?
> Can get that from the table as well
- walk from the end back to the beginning
- follow along choices that achieve the max score
> Alternatively, keep track of how you got the value too
- e.g., in robot, record if max was from down or left
- requires extra space in the table```

