CSE 417 Divide \mathcal{E} Conquer (pt 5) Review

Reminders

> HW3 due today

> HW4 will be posted tomorrow

- coding assignment
- need to invent a new divide \& conquer algorithm
$>$ similar to examples seen previously

Divide \& Conquer Review

> Apply the steps:

1. Divide the input data into $2+$ parts
2. Recursively solve the problem on each part
3. Combine the sub-problem solutions into a problem solution
> Key questions:
4. Can you solve the problem by combining solutions from sub-problems?
5. Is that easier than solving it directly?
> Use master theorem to calculate the running time

Review from last Time

> Max Sub-Array Sum

- combine separates into independent problems on left and right half...

Maximum Sub-array Sum

$>\max A[i]+\ldots+A[j-1]$
$=\max A[i]+\ldots+A[n / 2-1]+A[n / 2]+\ldots+A[j-1]$

- can always do this since $\mathrm{i} \leq \mathrm{n} / 2 \leq \mathrm{j}$
- splits sum into two parts
$>$ sum of suffix of first half
> sum of prefix of second half

Maximum Sub-array Sum

> Choice of i only affects first part and Choice of j only affects second part

- can maximize the two independently
$>\max (\mathrm{A}[\mathrm{i}]+\ldots+\mathrm{A}[\mathrm{n} / 2-1])+(\mathrm{A}[\mathrm{n} / 2]+\ldots+\mathrm{A}[\mathrm{j}-1])$
$=(\max A[i]+\ldots+A[n / 2-1])+(\max A[n / 2]+\ldots+A[j-1])$
- nothing can be larger than this (\leq) and it is achieved (=)

Review from last Time

> Max Sub-Array Sum

- combine separates into independent problems on left and right half
- dead give-away that divide \& conquer will be useful

Review from last Time

> Max Sub-Array Sum

- combine separates into independent problems on left and right half
- dead give-away that divide \& conquer will be useful

> Max Single-Sell Profit

- equivalent problem with percentage change instead of absolute change...

Maximum Single-Sell Profit

> Issue: actually want to minimize percentage increase

- (i.e., increase per dollar bought)
- can spend whatever amount you want on the stock (simplification)
$>\max \left(\right.$ price $_{\text {sell }}-$ price $\left._{\text {buy }}\right) /$ price $_{\text {buy }}$
$=$ max price ${ }_{\text {sell }} /$ price $_{\text {buy }}-1$
\rightarrow max price ${ }_{\text {sell }} /$ price $_{\text {buy }}$
\rightarrow max $\log \left(\right.$ price $_{\text {sell }} /$ price $\left._{\text {buy }}\right)$
$=\max \log \left(\right.$ price $\left._{\text {sell }}\right)-\log \left(\right.$ price $\left._{\text {buy }}\right)$
- original problem with log prices instead
log is monotonically increasing, so it does not change order, so it does not change maximum

Review from last Time

> Max Sub-Array Sum

- combine separates into independent problems on left and right half
- dead give-away that divide \& conquer will be useful

> Max Single-Sell Profit

- equivalent problem with percentage change instead of absolute change
- (use in HW4)

Review from last Time

> Max Sub-Array Sum

- combine separates into independent problems on left and right half
- dead give-away that divide \& conquer will be useful
> Max Single-Sell Profit
- equivalent problem with percentage change instead of absolute change
- (use in HW4)
> Intersecting Horz \& Vert Segments
- can be implemented in $O(n \log n)$ with divide \& conquer
- requires a subtle change to the problem formulation

Outline for Today

> Quicksort
> Implementing Partition
$>$ Find by Rank
> Maximum Sub-array Average

Quicksort

> Previously looked at mergesort:

- divide into A[0..n/2-1] and A[n/2..n-1] - easy!
- combine by merging two sorted arrays into one - tricky but $O(n)$
> Quicksort is another divide \& conquer sorting algorithm
> Uses a strategy that makes combining easy instead:

$>$ everything in left part is smaller than everything in right part
- recursively sort $A[0 . . k-1]$ and $A[k . . n-1]$
- combine by... nothing

Partition

> Key subroutine of mergesort is (sorted) "merge"
$>$ Key subroutine of quicksort is "partition"

- solves the following sub-problem
> Sub-problem: Given (unsorted) array A and a number x, rearrange so that $\mathrm{A}[0], \ldots, \mathrm{A}[\mathrm{k}-1] \leq \mathrm{x}$ and $\mathrm{x}<\mathrm{A}[\mathrm{k}], \ldots, \mathrm{A}[\mathrm{n}-1]$ and then return the index k
> We will later see this can be done in $\mathrm{O}(\mathrm{n})$ time...

Quicksort

> Apply divide \& conquer...

$A[0]$ is already in the right place

1. Divide using partition:
$>$ partition A[1..n-1] with $\mathrm{x}=\mathrm{A}[0]$
$>$ tells us that (each of A[0], ..., A[k-1]) < (each of A[k], ..., A[n-1])
2. Sort $A[0 . . k-1]$ and $A[k . . n-1]$ recursively in place
3. Combine by doing nothing
$>$ already have $A[0] \leq \ldots \leq A[k-1]<A[k] \leq \ldots \leq A[n-1]$
sorted partitioned sorted

Preview

> Apply divide \& conquer...

1. Divide using partition:
$>$ partition $A[1 . . n-1]$ with $x=A[0]$
$>$ tells us that (each of A[0], ..., A[k-1]) $<($ each of $A[k], \ldots, A[n-1])$
> We actually know a little more than this...

- A[1], ..., A[k-1] $\leq A[0]$, so $A[0]$ is as large as any of these
- it will end up at $A[k-1]$ when A is fully sorted
- could just put it there by swapping A[0] and A[k-1]
$>$ that would let us recurse on A[0..k-2] and A[k..n-1]

Quicksort Run Time (out of scope)

> If $\mathrm{k}=\mathrm{n} / 2$, then we have two recursive calls of half the size

- $T(n)=2 T(n / 2)+O(n)$
- running time is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ by master theorem
> Unfortunately, there is no way to know that we'll get $\mathrm{k}=\mathrm{n} / 2$
- worst case would be if A[0] is the smallest or largest element
- that would be true if A was already sorted!
- get an $O\left(n^{2}\right)$ algorithm in that case
$>$ that's bad

Quicksort Run Time (out of scope)

> If $\mathrm{k}=\mathrm{n} / 2$, then we have two recursive calls of half the size
$-T(n)=2 T(n / 2)+O(n)$

- running time is $O(n \log n)$ by master theorem
> Unfortunately, there is no way to know that we'll get $k=n / 2$
- nonetheless, this was often used in practice
- alternative \#1: pick a random element and swap it with A[0]
- alternative \#2: take the middle of A[0], A[n/2], and A[n-1]
> "median of three"
> works very well in practice
> works perfectly on sorted data (no longer the worst case)

Quicksort Run Time (out of scope)

> It is sufficient if we have $a<1 / n$ probability of bad split

- (call the split bad if it's in the first 5\% or last 5\% of numbers)
- average running time is then $(n-1) / n O(n \log n)+(1 / n) O\left(n^{2}\right)=O(n \log n)+O(n)$
- still O(n $\log \mathrm{n})$ on average
$>$ This is studied in more detail in Randomized Algorithms class
- assumes familiarity with machinery of probability
> Quicksort works extremely well in practice whether or not we can get the theory right...

Outline for Today

> Quicksort
> Implementing Partition

> Find by Rank
> Maximum Sub-array Average

Implementing Partition

> Problem: Given (unsorted) array A and a number x, rearrange so that $\mathrm{A}[0], \ldots, \mathrm{A}[\mathrm{k}-1] \leq \mathrm{x}$ and x < $\mathrm{A}[\mathrm{k}], \ldots, \mathrm{A}[\mathrm{n}-1]$ and then return the index k
> Another case where you need to careful attention to detail

- i.e., you need to spell out your loop invariant in detail

Implementing Partition

> Problem: Given (unsorted) array A and a number x, rearrange so that $\mathrm{A}[0], \ldots, \mathrm{A}[\mathrm{k}-1] \leq \mathrm{x}$ and x < $\mathrm{A}[\mathrm{k}], \ldots, \mathrm{A}[\mathrm{n}-1]$ and then return the index k

Implementing Partition

> Problem: Given (unsorted) array A and a number x, rearrange so that $\mathrm{A}[0], \ldots, \mathrm{A}[\mathrm{k}-1] \leq \mathrm{x}$ and x < $\mathrm{A}[\mathrm{k}], \ldots, \mathrm{A}[\mathrm{n}-1]$ and then return the index k

Loop Invariant: $A[0]$, .., $A[i-1] \leq x$ and $x<A[j], . . ., A[n-1]$

- set $\mathrm{i}=0$ and $\mathrm{j}=\mathrm{n}$ to make it true initially
- done when $i=j(=k)$

Implementing Partition

```
/** Return k with A[0], ..., A[k-1] \leq x < A[k], ..., A[n-1]. */
void partition(int[] A, int x) {
    int i = 0, j = A.length;
    // Inv:A[0], ..., A[i-1] \leq x and x < A[j], ..., A[n-1]
    while (i < j) {
        if (A[i] <= x) {
            i++; \Longleftarrow invariant still holds since A[i-1] <= x
        } else {
            swap(A, i, j-1); \Longleftarrow
            j--; }x<A[j] so invariant holds agai
        }
    }
    return j; postcondition is true with k=j
}
```


Outline for Today

$>$ Quicksort
> Implementing Partition
> Find by Rank
> Maximum Sub-array Average

Find By Rank

> Problem: Given an unsorted array A and a number m in 1 .. n , return the m-th smallest number in A.
> Simple Solution: (always start here)

- sort A
- return A[m-1]
- takes $\Theta(\mathrm{n} \log \mathrm{n})$ time using mergesort

Find By Rank

> Problem: Given an unsorted array A and a number m in 1 .. n , return the m-th smallest number in A.
> Q: Is this optimal?

- any solution must take $\Omega(\mathrm{n})$ time
- Q: do we need to fully sort it?
> algorithm returns A[m-1]
so only needed the fact that $A[m-1]$ is in the right place

Find By Rank

> Problem: Given an unsorted array A and a number m in 1 .. n , return the m-th smallest number in A.
> Sub-problem: partition so that $\mathrm{A}[\mathrm{m}-1]$ is in the right spot

- i.e., we need $A[0]$, ..., $A[m-2] \leq A[m-1]<A[m], \ldots, A[n-1]$
- let's try using quicksort's partition...

Find By Rank

> Problem: Given an unsorted array A and a number m in 1 .. n , return the m-th smallest number in A.
> Sub-problem: partition so that $\mathrm{A}[\mathrm{m}-1]$ is in the right spot
> Idea: partition A using A[0] then swapping... puts A[0] at its proper sorted position of A[k-1]
> Q: What's wrong with this?
> A: This tells us where A[0] belongs when sorted, but it may not belong at index $m-1$!

Find By Rank

> Problem: Given an unsorted array A and a number m in 1 .. n , return the m-th smallest number in A.
> Sub-problem: partition so that A[m-1] is in the right spot
> Idea: partition A using A[0]

- A[0] moves to A[k-1], but could have $k<m$ or $m<k$
> Q: What should we do?
> A: binary search

Find By Rank

> Problem: Given an unsorted array A and a number m in 1 .. n , return the m-th smallest number in A.
> Algorithm (partition + binary search = "quick select")

1. Partition A using $A[0]$, moving it to index $k-1$.
2. If $k>m$, then recurse on $A[0$.. $k-2]$ looking for m-th smallest.
3. If $k<m$, then recurse on $A[k . . n-1]$ looking for $(m-k)$-th smallest.
4. Otherwise, $k=m$, so return $A[k-1]$.
$>$ Running time should satisfy $T(n)=T(n / b)+O(n)$.

- solution is $\mathrm{O}(\mathrm{n})$ by master theorem even if $b=1.001$

Outline for Today

> Quicksort
> Implementing Partition
$>$ Find by Rank
> Maximum Sub-array Average

Maximum Sub-array Average

Previously looked at maximum sub-array sum...
> Problem: Given an array A of integers, find $\max A[i]+\ldots+A[j-1]$ over all $0 \leq i \leq j \leq n$

- we allow $i=j$ so that the sub-array $A[i . . j-1]$ can be empty
- note that $A[i]$'s can be negative

Now consider...
> Problem: Given an array A of integers, find max avg(A[i] + ... + A[j]) over $0 \leq i<j \leq n$
only sub-arrays with $2+$ elements

Maximum Sub-array Average

> Problem: Given an array A of integers, find $\max (A[i]+\ldots+A[j]) /(j-i+1)$ over all $0 \leq i<j \leq n$
> This seems hard... let's try to simplify it
> Easier Problem: given a number T,
can we determine if $\max \operatorname{avg}(A[i]+\ldots+A[j]) \geq T$?
> Q: Why might that help?
> A: Binary search!

Maximum Sub-array Average

> Problem: Given an array A of integers, find $\max (A[i]+\ldots+A[j]) /(j-i+1)$ over all $0 \leq i<j \leq n$
> Observation:

$$
\begin{array}{ll}
(A[i]+\ldots+A[i+k-1]) / k \geq T & \text { iff } \\
A[i]+\ldots+A[i+k-1] \geq T k & \text { iff } \\
A[i]+\ldots+A[i+k-1]-T k \geq 0 & \text { iff } \\
(A[i]-T k / k)+\ldots+(A[i+k-1]-T k / k) \geq 0 & \text { iff } \\
(A[i]-T)+\ldots+(A[i+k-1]-T) \geq 0 &
\end{array}
$$

Maximum Sub-array Average

> Problem: Given an array A of integers, find $\max (A[i]+\ldots+A[j]) /(j-i+1)$ over all $0 \leq i<j \leq n$
> Observation:

$$
\begin{aligned}
& (A[i]+\ldots+A[j]) /(j-i+1) \geq T \quad \text { iff } \\
& (A[i]-T)+\ldots+(A[j]-T) \geq 0
\end{aligned}
$$

- max sub-array average $\geq \mathrm{T}$ iff max sub-array sum of $B \geq 0$, where $B[i]=A[i]-T$

Maximum Sub-array Average

> Problem: Given an array A of integers,

$$
\text { find } \max (A[i]+\ldots+A[j]) /(j-i+1) \text { over all } 0 \leq i<j \leq n
$$

> Observation: max sub-array average $\geq \mathrm{T}$ iff max sub-array sum of $B \geq 0$, where $B[i]=A[i]-T$
> Solution: use binary search to find the maximum average (T)

- we can stop when $|b-a|<1 / n$
- can use repeated doubling to find an upper bound
- running time of $\Theta\left(n(\log n)^{2}\right)$ using previous algorithm
$>$ will later see now to solve max sub-array sum in $\Theta(n)$ time

