
CSE 417
Divide & Conquer (pt 5)
Review



> HW3 due today

> HW4 will be posted tomorrow
– coding assignment
– need to invent a new divide & conquer algorithm

> similar to examples seen previously

Reminders



> Apply the steps:
1. Divide the input data into 2+ parts
2. Recursively solve the problem on each part
3. Combine the sub-problem solutions into a problem solution

> Key questions:
1. Can you solve the problem by combining solutions from sub-problems?
2. Is that easier than solving it directly?

> Use master theorem to calculate the running time

Divide  & Conquer Review



> Max Sub-Array Sum
– combine separates into independent problems on left and right half...

Review from last Time



> max A[i] + ... + A[j-1]
= max A[i] + ... + A[n/2-1] + A[n/2] + ... + A[j-1]
– can always do this since i ≤ n/2 ≤ j 
– splits sum into two parts

> sum of suffix of first half
> sum of prefix of second half

Maximum Sub-array Sum

i jn/2



> Choice of i only affects first part and
Choice of j only affects second part
– can maximize the two independently

> max (A[i] + ... + A[n/2-1]) + (A[n/2] + ... + A[j-1])
= (max A[i] + ... + A[n/2-1]) + (max A[n/2] + ... + A[j-1])
– nothing can be larger than this (≤) and it is achieved (=)

Maximum Sub-array Sum

i jn/2



> Max Sub-Array Sum
– combine separates into independent problems on left and right half
– dead give-away that divide & conquer will be useful

Review from last Time



> Max Sub-Array Sum
– combine separates into independent problems on left and right half
– dead give-away that divide & conquer will be useful

> Max Single-Sell Profit
– equivalent problem with percentage change instead of absolute change...

Review from last Time



> Issue: actually want to minimize percentage increase
– (i.e., increase per dollar bought)
– can spend whatever amount you want on the stock (simplification)

> max (pricesell – pricebuy) / pricebuy

= max pricesell / pricebuy – 1
➞max pricesell / pricebuy

➞max log(pricesell / pricebuy)
= max log(pricesell) – log(pricebuy)
– original problem with log prices instead

Maximum Single-Sell Profit

log is monotonically increasing,
so it does not change order,
so it does not change maximum



> Max Sub-Array Sum
– combine separates into independent problems on left and right half
– dead give-away that divide & conquer will be useful

> Max Single-Sell Profit
– equivalent problem with percentage change instead of absolute change
– (use in HW4)

Review from last Time



> Max Sub-Array Sum
– combine separates into independent problems on left and right half
– dead give-away that divide & conquer will be useful

> Max Single-Sell Profit
– equivalent problem with percentage change instead of absolute change
– (use in HW4)

> Intersecting Horz & Vert Segments
– can be implemented in O(n log n) with divide & conquer
– requires a subtle change to the problem formulation

Review from last Time



> Quicksort
> Implementing Partition
> Find by Rank
> Maximum Sub-array Average

Outline for Today



> Previously looked at mergesort:
– divide into A[0..n/2-1] and A[n/2..n-1] — easy!
– combine by merging two sorted arrays into one — tricky but O(n)

> Quicksort is another divide & conquer sorting algorithm

> Uses a strategy that makes combining easy instead:
– divide: rearrange so that (each of A[0], ..., A[k-1]) < (each of A[k], ..., A[n-1])

> everything in left part is smaller than everything in right part
– recursively sort A[0..k-1] and A[k..n-1]
– combine by... nothing

Quicksort



> Key subroutine of mergesort is (sorted) “merge”
> Key subroutine of quicksort is “partition”

– solves the following sub-problem

> Sub-problem: Given (unsorted) array A and a number x, 
rearrange so that A[0], ..., A[k-1] ≤ x and x < A[k], ..., A[n-1] and 
then return the index k

> We will later see this can be done in O(n) time...

Partition



> Apply divide & conquer...

1. Divide using partition:
> partition A[1..n-1] with x = A[0]
> tells us that (each of A[0], ..., A[k-1]) < (each of A[k], ..., A[n-1])

2. Sort A[0..k-1] and A[k..n-1] recursively in place

3. Combine by doing nothing
> already have A[0] ≤ ... ≤ A[k-1] < A[k] ≤ ... ≤ A[n-1]

Quicksort

A[0] is already in the right place

sorted sortedpartitioned



> Apply divide & conquer...

1. Divide using partition:
> partition A[1..n-1] with x = A[0]
> tells us that (each of A[0], ..., A[k-1]) < (each of A[k], ..., A[n-1])

> We actually know a little more than this...
– A[1], ..., A[k-1] ≤ A[0], so A[0] is as large as any of these
– it will end up at A[k-1] when A is fully sorted
– could just put it there by swapping A[0] and A[k-1]

> that would let us recurse on A[0..k-2] and A[k..n-1]

Preview



> If k = n/2, then we have two recursive calls of half the size
– T(n) = 2 T(n/2) + O(n)
– running time is O(n log n) by master theorem

> Unfortunately, there is no way to know that we’ll get k = n/2
– worst case would be if A[0] is the smallest or largest element
– that would be true if A was already sorted!
– get an O(n2) algorithm in that case

> that’s bad

Quicksort Run Time (out of scope)



> If k = n/2, then we have two recursive calls of half the size
– T(n) = 2 T(n/2) + O(n)
– running time is O(n log n) by master theorem

> Unfortunately, there is no way to know that we’ll get k = n/2
– nonetheless, this was often used in practice
– alternative #1: pick a random element and swap it with A[0]
– alternative #2: take the middle of A[0], A[n/2], and A[n-1]

> “median of three”
> works very well in practice
> works perfectly on sorted data (no longer the worst case)

Quicksort Run Time (out of scope)



> It is sufficient if we have a < 1/n probability of bad split
– (call the split bad if it’s in the first 5% or last 5% of numbers)
– average running time is then (n-1)/n O(n log n) + (1/n) O(n2) = O(n log n) + O(n)
– still O(n log n) on average

> This is studied in more detail in Randomized Algorithms class
– assumes familiarity with machinery of probability

> Quicksort works extremely well in practice
whether or not we can get the theory right...

Quicksort Run Time (out of scope)



> Quicksort
> Implementing Partition
> Find by Rank
> Maximum Sub-array Average

Outline for Today



> Problem: Given (unsorted) array A and a number x,
rearrange so that A[0], ..., A[k-1] ≤ x and x < A[k], ..., A[n-1] and 
then return the index k

> Another case where you need to careful attention to detail
– i.e., you need to spell out your loop invariant in detail

Implementing Partition



> Problem: Given (unsorted) array A and a number x,
rearrange so that A[0], ..., A[k-1] ≤ x and x < A[k], ..., A[n-1] and 
then return the index k

Implementing Partition

A

≤ x x <



> Problem: Given (unsorted) array A and a number x,
rearrange so that A[0], ..., A[k-1] ≤ x and x < A[k], ..., A[n-1] and 
then return the index k

Implementing Partition

A

i j

Loop Invariant: A[0], .., A[i-1] ≤ x and x < A[j], ..., A[n-1]
– set i = 0 and j = n to make it true initially
– done when i = j (= k)



/** Return k with A[0], ..., A[k-1] ≤ x < A[k], ..., A[n-1]. */
void partition(int[] A, int x) {
int i = 0, j = A.length;

// Inv: A[0], ..., A[i-1] ≤ x and x < A[j], ..., A[n-1]
while (i < j) {
if (A[i] <= x) {
i++;

} else {
swap(A, i, j-1);
j--;

}
}

return j;
}

Implementing Partition

invariant still holds since A[i-1] <= x

x < A[j-1]
x < A[j] so invariant holds again

postcondition is true with k = j



> Quicksort
> Implementing Partition
> Find by Rank
> Maximum Sub-array Average

Outline for Today



> Problem: Given an unsorted array A and a number m in 1 .. n, 
return the m-th smallest number in A.

> Simple Solution: (always start here)
– sort A
– return A[m-1]
– takes Θ(n log n) time using mergesort

Find By Rank



> Problem: Given an unsorted array A and a number m in 1 .. n, 
return the m-th smallest number in A.

> Q: Is this optimal?
– any solution must take Ω(n) time
– Q: do we need to fully sort it?

> algorithm returns A[m-1]
so only needed the fact that A[m-1] is in the right place

Find By Rank



> Problem: Given an unsorted array A and a number m in 1 .. n, 
return the m-th smallest number in A.

> Sub-problem: partition so that A[m-1] is in the right spot
– i.e., we need A[0], ..., A[m-2] ≤ A[m-1] < A[m], ..., A[n-1]
– let’s try using quicksort’s partition...

Find By Rank



> Problem: Given an unsorted array A and a number m in 1 .. n, 
return the m-th smallest number in A.

> Sub-problem: partition so that A[m-1] is in the right spot

> Idea: partition A using A[0] then swapping...
puts A[0] at its proper sorted position of A[k-1]

> Q: What’s wrong with this?
> A: This tells us where A[0] belongs when sorted,

but it may not belong at index m – 1!

Find By Rank



> Problem: Given an unsorted array A and a number m in 1 .. n, 
return the m-th smallest number in A.

> Sub-problem: partition so that A[m-1] is in the right spot

> Idea: partition A using A[0]
– A[0] moves to A[k-1], but could have k < m or m < k

> Q: What should we do?
> A: binary search

Find By Rank



> Problem: Given an unsorted array A and a number m in 1 .. n, 
return the m-th smallest number in A.

> Algorithm (partition + binary search = “quick select”)
1. Partition A using A[0], moving it to index k – 1.
2. If k > m, then recurse on A[0 .. k-2] looking for m-th smallest.
3. If k < m, then recurse on A[k .. n-1] looking for (m – k)-th smallest.
4. Otherwise, k = m, so return A[k-1].

> Running time should satisfy T(n) = T(n / b) + O(n).
– solution is O(n) by master theorem even if b = 1.001

Find By Rank



> Quicksort
> Implementing Partition
> Find by Rank
> Maximum Sub-array Average

Outline for Today



Previously looked at maximum sub-array sum...

> Problem: Given an array A of integers,
find max A[i] + ... + A[j-1] over all 0 ≤ i ≤ j ≤ n

– we allow i = j so that the sub-array A[i..j-1] can be empty
– note that A[i]’s can be negative

Now consider...

> Problem: Given an array A of integers,
find max avg(A[i] + ... + A[j]) over 0 ≤ i < j ≤ n

Maximum Sub-array Average

only sub-arrays with 2+ elements



> Problem: Given an array A of integers,
find max (A[i] + ... + A[j]) / (j – i + 1) over all 0 ≤ i < j ≤ n

> This seems hard... let’s try to simplify it

> Easier Problem: given a number T,
can we determine if max avg(A[i] + ... + A[j]) ≥ T?

> Q: Why might that help?
> A: Binary search!

Maximum Sub-array Average



> Problem: Given an array A of integers,
find max (A[i] + ... + A[j]) / (j – i + 1) over all 0 ≤ i < j ≤ n

> Observation:

(A[i] + ... + A[i+k-1]) / k ≥ T iff
A[i] + ... + A[i+k-1] ≥ Tk iff
A[i] + ... + A[i+k-1] – Tk ≥ 0 iff
(A[i] – Tk/k) + ... + (A[i+k-1] – Tk/k) ≥ 0 iff
(A[i] – T) + ... + (A[i+k-1] – T) ≥ 0

Maximum Sub-array Average



> Problem: Given an array A of integers,
find max (A[i] + ... + A[j]) / (j – i + 1) over all 0 ≤ i < j ≤ n

> Observation:

(A[i] + ... + A[j]) / (j–i+1) ≥ T iff
(A[i] – T) + ... + (A[j] – T) ≥ 0

– max sub-array average ≥ T iff
max sub-array sum of B ≥ 0,

where B[i] = A[i] – T

Maximum Sub-array Average



> Problem: Given an array A of integers,
find max (A[i] + ... + A[j]) / (j – i + 1) over all 0 ≤ i < j ≤ n

> Observation: max sub-array average ≥ T iff
max sub-array sum of B ≥ 0, where B[i] = A[i] – T

> Solution: use binary search to find the maximum average (T)
– we can stop when |b – a| < 1/n
– can use repeated doubling to find an upper bound
– running time of Θ(n (log n)2) using previous algorithm

> will later see now to solve max sub-array sum in Θ(n) time

Maximum Sub-array Average


