CSE 417
Divide & Conquer (pt 5)
Review
Reminders

> HW3 due today

> HW4 will be posted tomorrow
 – coding assignment
 – need to invent a new divide & conquer algorithm
 > similar to examples seen previously
Divide & Conquer Review

> Apply the steps:
 1. Divide the input data into 2+ parts
 2. Recursively solve the problem on each part
 3. Combine the sub-problem solutions into a problem solution

> Key questions:
 1. Can you solve the problem by combining solutions from sub-problems?
 2. Is that easier than solving it directly?

> Use master theorem to calculate the running time
Review from last Time

> Max Sub-Array Sum
 – combine separates into *independent* problems on left and right half...
Maximum Sub-array Sum

\[\text{max } A[i] + \ldots + A[j-1] \]

- can always do this since \(i \leq n/2 \leq j \)
- splits sum into two parts
 - sum of suffix of first half
 - sum of prefix of second half
Choice of i only affects first part and Choice of j only affects second part
 - can maximize the two independently

$\max (A[i] + \ldots + A[n/2-1]) + (A[n/2] + \ldots + A[j-1])$
$= (\max A[i] + \ldots + A[n/2-1]) + (\max A[n/2] + \ldots + A[j-1])$
 - nothing can be larger than this (\leq) and it is achieved ($=$)
Review from last Time

> Max Sub-Array Sum
 - combine separates into *independent* problems on left and right half
 - dead give-away that divide & conquer will be useful
Review from last Time

> Max Sub-Array Sum
 – combine separates into *independent* problems on left and right half
 – dead give-away that divide & conquer will be useful

> Max Single-Sell Profit
 – equivalent problem with percentage change instead of absolute change...
Maximum Single-Sell Profit

> **Issue:** actually want to minimize percentage increase
 > (i.e., increase per dollar bought)
 > can spend whatever amount you want on the stock (simplification)

> max \(\left(\frac{\text{price}_{\text{sell}} - \text{price}_{\text{buy}}}{\text{price}_{\text{buy}}} \right) \)
 > = max \(\frac{\text{price}_{\text{sell}}}{\text{price}_{\text{buy}}} - 1 \)
 > → max \(\frac{\text{price}_{\text{sell}}}{\text{price}_{\text{buy}}} \)
 > → max \(\log\left(\frac{\text{price}_{\text{sell}}}{\text{price}_{\text{buy}}} \right) \)
 > = max \(\log(\text{price}_{\text{sell}}) - \log(\text{price}_{\text{buy}}) \)
 > – original problem with log prices instead

\(\log \) is monotonically increasing, so it does not change order, so it does not change maximum.
Review from last Time

> **Max Sub-Array Sum**
 - combine separates into *independent* problems on left and right half
 - dead give-away that divide & conquer will be useful

> **Max Single-Sell Profit**
 - equivalent problem with percentage change instead of absolute change
 - (use in HW4)
Review from last Time

> Max Sub-Array Sum
 – combine separates into independent problems on left and right half
 – dead give-away that divide & conquer will be useful

> Max Single-Sell Profit
 – equivalent problem with percentage change instead of absolute change
 – (use in HW4)

> Intersecting Horz & Vert Segments
 – can be implemented in O(n log n) with divide & conquer
 – requires a subtle change to the problem formulation
Outline for Today

- Quicksort
- Implementing Partition
- Find by Rank
- Maximum Sub-array Average
Previously looked at mergesort:
 – divide into A[0..n/2-1] and A[n/2..n-1] — easy!
 – combine by merging two sorted arrays into one — tricky but O(n)

Quicksort is another divide & conquer sorting algorithm

Uses a strategy that makes combining easy instead:
 – divide: rearrange so that (each of A[0], ..., A[k-1]) < (each of A[k], ..., A[n-1])
 > everything in left part is smaller than everything in right part
 – recursively sort A[0..k-1] and A[k..n-1]
 – combine by... nothing
Key subroutine of mergesort is (sorted) “merge”

Key subroutine of quicksort is “partition”
 – solves the following sub-problem

> **Sub-problem**: Given (unsorted) array \(A\) and a number \(x\), rearrange so that \(A[0], \ldots, A[k-1] \leq x\) and \(x < A[k], \ldots, A[n-1]\) and then return the index \(k\)

> We will later see this can be done in \(O(n)\) time...
Quicksort

> Apply divide & conquer...

1. Divide using partition:
 > partition \(A[1..n-1]\) with \(x = A[0]\)
 > tells us that (each of \(A[0], ..., A[k-1]\)) < (each of \(A[k], ..., A[n-1]\))

2. Sort \(A[0..k-1]\) and \(A[k..n-1]\) recursively in place

3. Combine by doing nothing
 > already have \(A[0] \leq ... \leq A[k-1] < A[k] \leq ... \leq A[n-1]\)

\(A[0]\) is already in the right place
Apply divide & conquer...

1. Divide using partition:
 - partition A[1..n-1] with x = A[0]
 - tells us that (each of A[0], ..., A[k-1]) < (each of A[k], ..., A[n-1])

> We actually know a little more than this...
 - A[1], ..., A[k-1] ≤ A[0], so A[0] is as large as any of these
 - it will end up at A[k-1] when A is fully sorted
 - could just put it there by swapping A[0] and A[k-1]
 > that would let us recurse on A[0..k-2] and A[k..n-1]
Quicksort Run Time (out of scope)

> If $k = \frac{n}{2}$, then we have two recursive calls of half the size
 - $T(n) = 2 \cdot T(\frac{n}{2}) + O(n)$
 - running time is $O(n \log n)$ by master theorem

> Unfortunately, there is no way to know that we'll get $k = \frac{n}{2}$
 - worst case would be if $A[0]$ is the smallest or largest element
 - that would be true if A was already sorted!
 - get an $O(n^2)$ algorithm in that case
 > that's bad
If $k = n/2$, then we have two recursive calls of half the size
- $T(n) = 2T(n/2) + O(n)$
- running time is $O(n \log n)$ by master theorem

Unfortunately, there is no way to know that we’ll get $k = n/2$
- nonetheless, this was often used in practice
- alternative #1: pick a random element and swap it with $A[0]$
 - “median of three”
 - works very well in practice
 - works perfectly on sorted data (no longer the worst case)
Quicksort Run Time (out of scope)

> It is sufficient if we have a $< 1/n$ probability of bad split
> - (call the split bad if it’s in the first 5% or last 5% of numbers)
> - average running time is then $(n-1)/n \ O(n \log n) + (1/n) \ O(n^2) = O(n \log n) + O(n)$
> - still $O(n \log n)$ on average

> This is studied in more detail in *Randomized Algorithms* class
> - assumes familiarity with machinery of probability

> Quicksort works extremely well in practice whether or not we can get the theory right...
Outline for Today

- Quicksort
- Implementing Partition
- Find by Rank
- Maximum Sub-array Average
Implementing Partition

> **Problem:** Given (unsorted) array A and a number x, rearrange so that $A[0], ..., A[k-1] \leq x$ and $x < A[k], ..., A[n-1]$ and then return the index k

> Another case where you need to careful attention to detail

 – i.e., you need to spell out your **loop invariant** in detail
Implementing Partition

> Problem: Given (unsorted) array A and a number x, rearrange so that $A[0], ..., A[k-1] \leq x$ and $x < A[k], ..., A[n-1]$ and then return the index k
Implementing Partition

> **Problem:** Given (unsorted) array A and a number x, rearrange so that A[0], ..., A[k-1] ≤ x and x < A[k], ..., A[n-1] and then return the index k

Loop Invariant: A[0], .., A[i-1] ≤ x and x < A[j], ..., A[n-1]

- set i = 0 and j = n to make it true initially
- done when i = j (= k)
Implementing Partition

```java
/** Return k with A[0], ..., A[k-1] ≤ x < A[k], ..., A[n-1]. */
void partition(int[] A, int x) {
    int i = 0, j = A.length;

    // Inv: A[0], ..., A[i-1] ≤ x and x < A[j], ..., A[n-1]
    while (i < j) {
        if (A[i] <= x) {
            i++;  // invariant still holds since A[i-1] <= x
        } else {
            swap(A, i, j-1);  // x < A[j-1] so invariant holds again
            j--;
        }
    }

    return j;  // postcondition is true with k = j
}
```

Outline for Today

- Quicksort
- Implementing Partition
- Find by Rank
- Maximum Sub-array Average
Find By Rank

> **Problem**: Given an unsorted array A and a number m in 1 .. n, return the m-th smallest number in A.

> **Simple Solution**: (always start here)
 - sort A
 - return A[m-1]
 - takes $\Theta(n \log n)$ time using mergesort
Find By Rank

> **Problem:** Given an unsorted array A and a number m in 1 .. n, return the m-th smallest number in A.

> **Q:** Is this optimal?
 > any solution must take $\Omega(n)$ time
 > **Q:** do we need to fully sort it?
 > > algorithm returns $A[m-1]$
 > > so only needed the fact that $A[m-1]$ is in the right place
Find By Rank

> **Problem**: Given an unsorted array \(A\) and a number \(m\) in \(1 \ldots n\), return the \(m\)-th smallest number in \(A\).

> **Sub-problem**: partition so that \(A[m-1]\) is in the right spot
 - i.e., we need \(A[0], \ldots, A[m-2] \leq A[m-1] < A[m], \ldots, A[n-1]\)
 - let’s try using quicksort’s partition...
Find By Rank

> **Problem**: Given an unsorted array A and a number m in 1 .. n, return the m-th smallest number in A.

> **Sub-problem**: partition so that A[m-1] is in the right spot

> **Idea**: partition A using A[0] then swapping... puts A[0] at its proper sorted position of A[k-1]

> **Q**: What’s wrong with this?
> **A**: This tells us where A[0] belongs when sorted, but it may not belong at index m – 1!
Find By Rank

> **Problem**: Given an unsorted array A and a number m in 1 .. n, return the m-th smallest number in A.

> **Sub-problem**: partition so that A[m-1] is in the right spot

> **Idea**: partition A using A[0]
 > A[0] moves to A[k-1], but could have k < m or m < k

> **Q**: What should we do?
> **A**: binary search
Problem: Given an unsorted array A and a number m in $1 .. n$, return the m-th smallest number in A.

Algorithm (partition + binary search = “quick select”)
1. Partition A using $A[0]$, moving it to index $k - 1$.
2. If $k > m$, then recurse on $A[0 .. k-2]$ looking for m-th smallest.
3. If $k < m$, then recurse on $A[k .. n-1]$ looking for $(m - k)$-th smallest.
4. Otherwise, $k = m$, so return $A[k-1]$.

Running time should satisfy $T(n) = T(n / b) + O(n)$.
 – solution is $O(n)$ by master theorem even if $b = 1.001$
Outline for Today

- Quicksort
- Implementing Partition
- Find by Rank
- Maximum Sub-array Average
Maximum Sub-array Average

Previously looked at maximum sub-array sum...

> **Problem:** Given an array A of integers,
 find $\max A[i] + \ldots + A[j-1]$ over all $0 \leq i \leq j \leq n$

 – we allow $i = j$ so that the sub-array $A[i..j-1]$ can be empty

 – note that $A[i]$’s can be **negative**

Now consider...

> **Problem:** Given an array A of integers,
 find $\max \text{avg}(A[i] + \ldots + A[j])$ over $0 \leq i < j \leq n$

 only sub-arrays with 2+ elements
Problem: Given an array A of integers, find $\max (A[i] + \ldots + A[j]) / (j - i + 1)$ over all $0 \leq i < j \leq n$.

This seems hard... let’s try to simplify it.

Easier Problem: given a number T, can we determine if $\max \text{avg}(A[i] + \ldots + A[j]) \geq T$?

Q: Why might that help?

A: Binary search!
Maximum Sub-array Average

> **Problem:** Given an array A of integers, find $\max (A[i] + \ldots + A[j]) / (j - i + 1)$ over all $0 \leq i < j \leq n$

> **Observation:**

$$\frac{A[i] + \ldots + A[i+k-1]}{k} \geq T \iff A[i] + \ldots + A[i+k-1] \geq Tk$$
$$A[i] + \ldots + A[i+k-1] - Tk \geq 0 \iff$$
$$\frac{(A[i] - Tk/k) + \ldots + (A[i+k-1] - Tk/k)}{k} \geq 0 \iff$$
$$(A[i] - T) + \ldots + (A[i+k-1] - T) \geq 0$$
Maximum Sub-array Average

> **Problem**: Given an array A of integers, find $\max \frac{A[i] + \ldots + A[j]}{(j-i+1)}$ over all $0 \leq i < j \leq n$

> **Observation**:

\[
\frac{A[i] + \ldots + A[j]}{(j-i+1)} \geq T \quad \text{iff} \quad (A[i] - T) + \ldots + (A[j] - T) \geq 0
\]

- max sub-array average $\geq T$ \quad \text{iff} \quad max sub-array sum of $B \geq 0$, where $B[i] = A[i] - T$
Maximum Sub-array Average

> **Problem:** Given an array A of integers, find $\max \left(\frac{A[i] + \ldots + A[j]}{j - i + 1} \right)$ over all $0 \leq i < j \leq n$

> **Observation:** \max sub-array average $\geq T$ iff \max sub-array sum of $B \geq 0$, where $B[i] = A[i] - T$

> **Solution:** use binary search to find the maximum average (T)
 - we can stop when $|b - a| < 1/n$
 - can use repeated doubling to find an upper bound
 - running time of $\Theta(n (\log n)^2)$ using previous algorithm
 > will later see how to solve max sub-array sum in $\Theta(n)$ time