CSE 417 Divide \mathcal{E} Conquer (pt 4) More Examples

Reminders

> HW3 due Wednesday

- get started right away on understanding the algorithm
- will be quick to do the drawing once you understand it fully

> HW2 postscript

- good resume material
- saw the impact of regularization
> penalty improves prediction accuracy (ex. of Occam's razor)
- esp. useful for model selection on "small data" problems
- always keep an eye out for applications of binary search

Divide \& Conquer Review

> Apply the steps:

1. Divide the input data into $2+$ parts
2. Recursively solve the problem on each part
3. Combine the sub-problem solutions into a problem solution
> Key questions:
4. Can you solve the problem by combining solutions from sub-problems?
5. Is that easier than solving it directly?
> Use master theorem to calculate the running time

Review from last Time

> Counting Inversions

- combine: add inversions (i, j) with i in first half and j in second half
- optimized by using binary search $\sim>$ faster than $O\left(n^{1+\varepsilon}\right)$ for any $\varepsilon>0$
$>$ eventually realized sequence of linear searches is $O(n) \sim>$ so $O(n \log n)$ in total

> Voronoi diagrams

> Closest Pair of Points

- optimize by comparing (p,q) if $|p . x-q . x|<d$ and $|p . y-q . y|<d$
- careful analysis reveals this is $O(n)$ worst case $\sim>O(n \log n)$ overall
> would have seen it was fast in practice anyway

Outline for Today

> Maximum sub-array sum

> Maximum single-sell profit
> Intersecting horz \& vert segments

Maximum Sub-array Sum

$>$ Famous interview question from the 1980-90s

- Jon Bentley wrote about the problem in CACM 1984
- no longer used, I think, since it's too well known
> Good algorithms question: has multiple solutions
- the best solution uses dynamic programming
- can also be solved with divide \& conquer (today)
> HW4 is similar to this problem

Maximum Sub-array Sum

> Problem: Given an array A of integers, find max of $A[i]+\ldots+A[j-1]$ over all $0 \leq i \leq j \leq n$

- we allow $\mathrm{i}=\mathrm{j}$ so that the sub-array $A[i: j-1]$ can be empty
- note that A[i]'s can be negative
> Example:

$$
A=[31,-41,59,26,-53,58,97,-93,-23,84]
$$

$>$ Maximum sum is $\mathrm{A}[2]+\ldots \mathrm{A}[6]=59+\ldots+97=187$

- includes a negative number, -53

Maximum Sub-array Sum

> Problem: Given an array A of integers, find max of $A[i]+\ldots+A[j-1]$ over all $0 \leq i \leq j \leq n$

- we allow $\mathrm{i}=\mathrm{j}$ so that the sub-array $A[i: j-1]$ can be empty
$>$ Brute force solution 1:
- for every i = 0 .. n, for every j = i .. n, compute $A[i]+\ldots+A[j-1]$
> take the maximum of all these
- takes $\Theta\left(n^{3}\right)$ time

Maximum Sub-array Sum

> Problem: Given an array A of integers, find max of $A[i]+\ldots+A[j-1]$ over all $0 \leq i \leq j \leq n$

- we allow $\mathrm{i}=\mathrm{j}$ so that the sub-array $A[i: j-1]$ can be empty
$>$ Brute force solution 1:
- takes $\Theta\left(n^{3}\right)$ time
> Brute force solution 2:
- compute $B[i]=A[i]+A[i+1]+\ldots+A[n-1]$ for all i in $\Theta(n)$ time
- for every $\mathrm{i}=0$.. n, for every $\mathrm{j}=\mathrm{i} . . \mathrm{n}$, compute $\mathrm{B}[\mathrm{i}]$ - $\mathrm{B}[\mathrm{j}]$
$>$ take the maximum of all these

Maximum Sub-array Sum

> Problem: Given an array A of integers, find max of $A[i]+\ldots+A[j-1]$ over all $0 \leq i \leq j \leq n$

- we allow $\mathrm{i}=\mathrm{j}$ so that the sub-array $A[i: j-1]$ can be empty
$>$ Brute force solution 1:
- takes $\Theta\left(n^{3}\right)$ time
$>$ Brute force solution 2:
- for every $\mathrm{i}=0$.. n, for every $\mathrm{j}=\mathrm{i} . . \mathrm{n}$, compute $\mathrm{B}[\mathrm{i}]$ - $\mathrm{B}[\mathrm{j}]$
$>$ take the maximum of all these
- takes $\Theta\left(n^{2}\right)$ time

Maximum Sub-array Sum

> Apply divide \& conquer...

1. Divide A into halves, $A[0 . . n / 2-1]$ and $A[n / 2 . . n-1]$
2. Recursively solve the sub-problem on each half
$>$ sums that start \& end on one side
3. Combine by considering sums starting on left, ending on right

$$
>\max (A[i]+\ldots+A[n / 2-1])+(A[n / 2]+\ldots+A[j-1])
$$

Maximum Sub-array Sum

> Apply divide \& conquer...
3. Combine by considering sums starting on left, ending on right
$>$ maximize $A[i]+\ldots+A[j-1]$

Maximum Sub-array Sum

$>\max A[i]+\ldots+A[j-1]$
$=\max A[i]+\ldots+A[n / 2-1]+A[n / 2]+\ldots+A[j-1]$

- can always do this since $\mathrm{i} \leq \mathrm{n} / 2 \leq \mathrm{j}$
- splits sum into two parts
$>$ sum of suffix of first half
> sum of prefix of second half

Maximum Sub-array Sum

> Choice of i only affects first part and Choice of j only affects second part

- can maximize the two independently
$\begin{aligned}> & \max A[i]+\ldots+A[j-1] \\ & =(\max A[i]+\ldots+A[n / 2-1])+(\max A[n / 2]+\ldots+A[j-1])\end{aligned}$
W

Maximum Sub-array Sum

> Apply divide \& conquer...
3. Combine by considering sums starting on left, ending on right
$>\max (A[i]+\ldots+A[n / 2-1])+(A[n / 2]+\ldots+A[j-1])$

$$
=(\max A[i]+\ldots+A[n / 2-1])+(\max A[n / 2]+\ldots+A[j-1])
$$

$>$ that equation is the key insight of the algorithm!

- max is achieved by separately maximizing each half
- similar ideas in dynamic programming (also greedy)

Maximum Sub-array Sum

> Apply divide \& conquer...
3. Combine by considering sums starting on left, ending on right
$>\max (A[i]+\ldots+A[n / 2-1])+(A[n / 2]+\ldots+A[j-1])$
$=(\max A[i]+\ldots+A[n / 2-1])+(\max A[n / 2]+\ldots+A[j-1])$
$>$ compute sums $A[i]+\ldots+A[n / 2-1]$ for each $i=0 . . n / 2-1$

- takes $\Theta(n)$ time
- take the maximum of these
$>$ compute sums $A[n / 2]+\ldots+A[j-1]$ for each $j=n / 2 \ldots n-1$
$\quad \quad-$ takes $\Theta(n)$ time
$>$

Maximum Sub-array Sum

> Apply divide \& conquer...

1. Divide A into halves, $A[0 . . n / 2-1]$ and $A[n / 2 . . n-1]$
2. Recursively solve the sub-problem on each half
$>$ sums that start \& end on one side
3. Combine by considering sums starting on left, ending on right
$>$ find max sum crossing divide with scan left \& scan right
> Divide + combine in $\Theta(n)$, so $\Theta(n \log n)$ by master thm

Outline for Today

> Maximum sub-array sum
> Maximum single-sell profit

> Intersecting horz \& vert segments

Maximum Single-Sell Profit

> Problem: Given a list of prices on each day, find the days on which to buy \& sell that would have achieved max profit

- maximize (sell price - buy price)

Maximum Single-Sell Profit

> Issue: actually want to minimize percentage increase

- (i.e., increase per dollar bought)
- can spend whatever amount you want on the stock (simplification)
$>\max \left(\right.$ price $_{\text {sell }}-$ price $\left._{\text {buy }}\right) /$ price $_{\text {buy }}$
$=$ max price ${ }_{\text {sell }} /$ price $_{\text {buy }}-1 \quad \log$ is monotonically increasing,
$=$ max price ${ }_{\text {sell }} /$ price $_{\text {buy }}$
$=\max \log \left(\right.$ price $_{\text {sell }} /$ price $\left._{\text {buy }}\right)$
$=\max \log \left(\right.$ price $\left._{\text {sell }}\right)-\log \left(\right.$ price $\left._{\text {buy }}\right)$
- original problem with log prices instead
so it does not change order, so it does not change maximum

Maximum Single-Sell Profit

> Apply divide \& conquer

1. Divide prices into first half and second half
2. Recursively solve each sub-problem
> gives best with both buy \& sell on same half
3. Combine by considering best buy on one half and sell on other half
> only need to consider buying in first half and selling in second half because we cannot buy after we sell

- (actually, you can... it's called short selling, but that's disallowed here)

Maximum Single-Sell Profit

> Apply divide \& conquer

1. Combine by considering best (buy in first half, sell in second half)
$>\mathrm{Q}$: what is the best price to buy at in first half?
$>\mathrm{A}$: minimum price
> Q: what is the best price to sell at in second half?
> A: maximum price

Maximum Single-Sell Profit

> Apply divide \& conquer

1. Divide prices into first half and second half
2. Recursively solve each sub-problem
> gives best with both buy \& sell on same half
3. Combine by considering best buy on one half and sell on other half
> find (min(first half), max(second half)) in O(n) time
$>$ Running time is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ by master theorem

Maximum Single-Sell Profit

> Q: Is this really easier to solve by divide and conquer?
> A: No!
> Linear-time single-pass (right to left) algorithm:

- keep track of max profit seen so far
- keep track of the maximum price seen so far
> best available price to sell in the future
- if current price - max price > max profit:
> make this the max price
> This is $\mathrm{O}(\mathrm{n})$ - faster than divide \& conquer solution

Maximum Single-Sell Profit

$>$ Q: Is this really easier to solve by divide and conquer?
> A: No!
$>$ Divide \& Conquer may still help us find the solution
> BUT ask yourself when you're done whether it's really needed

Outline for Today

> Maximum sub-array sum
> Maximum single-sell profit
> Intersecting horz \& vert segments

Count Intersections of Horz \& Vert Segments

> Problem: given a set of horizontal \& vertical segments, count the number of points where they intersect

> Brute force solution:

- check every pair to see if they intersect
- $\Theta\left(n^{2}\right)$ pairs to check if $n / 2$ vertical and $n / 2$ horizontal segments

Count Intersections of Horizontal \& Vertical Segments

> Apply divide \& conquer...

1. Divide horizontally into two halves
> vertical segments end up on one side
$>$ but horizontal segments could cross the dividing line
> leave those out
2. Recursively solve each sub-problem
3. Combine by adding intersections with missing ones
> every other intersection is accounted for
> those completely on left and right cannot intersect

Count Intersections of Horizontal \& Vertical Segments

> Sub-problem: find intersections with segments left out

- these are horizontal segments, so they intersect with vertical ones
- have a list of all the left out horizontal segments
> Idea: sort vertical \& left out horizontal segments together
- horizontal segments appear twice (once for each endpoint)
- can do the sort before-hand...
> only adds $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ to total running time

Count Intersections of Horz \& Vert Segments

> Idea: sort vert \& left out vert segments

- horizontal segments appear twice
- can do the sort before-hand...
> only adds O(n log n) to total running time

> Example: $\left[1_{A}, 1_{B}, 2,3,4_{C}, 5_{B}, 6,6_{A}, 7,8_{C}\right]$
- subscript indicates horizontal segment
- (in Java, this would be a list of objects)
> Approach: scan from right \& left to dividing line
- track horizontal segments \& look for intersections with vertical

Count Intersections of Horz \& Vert Segments

> Idea: sort vert \& left out vert segments

- horizontal segments appear twice
$>$ Example: $\left[1_{\mathrm{A}}, 1_{\mathrm{B}}, 2,3,4_{\mathrm{C}}, 5_{\mathrm{B}}, 6,6_{\mathrm{A}}, 7,8_{\mathrm{C}}\right]$

- subscript indicates horizontal segment
> Scan right to dividing line
- keep an AVL tree of horizontal segments seen so far
- for each vertical segment:
$>$ use range search on AVL tree to find intersecting horz segments
> takes $\mathrm{O}(\log \mathrm{n}+$ \#intersections) time

Count Intersections of Horizontal \& Vertical Segments

> Apply divide \& conquer...

1. Divide horizontally into two halves
> leaving out horizontal segments that span two halves
2. Recursively solve each sub-problem
3. Combine by adding intersections with missing ones
$>O(n \log n+$ \#intersections) scan to left \& right to count these
> Running time is $\mathrm{O}\left(\mathrm{n}^{1+\varepsilon}+\right.$ \#intersections) by master

Count Intersections of Horizontal \& Vertical Segments

> Q: Is this really easier to solve by divide and conquer?
> A: No!

- could just do this linear scan the entire way across
- running time is $\mathrm{O}(\mathrm{n} \log \mathrm{n}+$ \#intersections)
> Many faster algorithms for this problem...
- from Bentley, Tarjan, etc.

