
CSE 417
Divide & Conquer (pt 4)
More Examples



> HW3 due Wednesday
– get started right away on understanding the algorithm
– will be quick to do the drawing once you understand it fully

> HW2 postscript
– good resume material
– saw the impact of regularization

> penalty improves prediction accuracy (ex. of Occam’s razor)
– esp. useful for model selection on “small data” problems
– always keep an eye out for applications of binary search

Reminders



> Apply the steps:
1. Divide the input data into 2+ parts
2. Recursively solve the problem on each part
3. Combine the sub-problem solutions into a problem solution

> Key questions:
1. Can you solve the problem by combining solutions from sub-problems?
2. Is that easier than solving it directly?

> Use master theorem to calculate the running time

Divide  & Conquer Review



> Counting Inversions
– combine: add inversions (i, j) with i in first half and j in second half
– optimized by using binary search ~> faster than O(n1+ε) for any ε > 0

> eventually realized sequence of linear searches is O(n) ~> so O(n log n) in total

> Voronoi diagrams

> Closest Pair of Points
– optimize by comparing (p,q) if |p.x – q.x| < d and |p.y – q.y| < d
– careful analysis reveals this is O(n) worst case ~> O(n log n) overall

> would have seen it was fast in practice anyway

Review from last Time



> Maximum sub-array sum
> Maximum single-sell profit
> Intersecting horz & vert segments

Outline for Today



> Famous interview question from the 1980–90s
– Jon Bentley wrote about the problem in CACM 1984
– no longer used, I think, since it’s too well known

> Good algorithms question: has multiple solutions
– the best solution uses dynamic programming
– can also be solved with divide & conquer (today)

> HW4 is similar to this problem

Maximum Sub-array Sum



> Problem: Given an array A of integers,
find max of A[i] + ... + A[j-1] over all 0 ≤ i ≤ j ≤ n

– we allow i = j so that the sub-array A[i:j-1] can be empty
– note that A[i]’s can be negative

> Example:

A = [31, -41, 59, 26, -53, 58, 97, -93, -23, 84]

> Maximum sum is A[2] + ... A[6] = 59 + ... + 97 = 187
– includes a negative number, -53

Maximum Sub-array Sum



> Problem: Given an array A of integers,
find max of A[i] + ... + A[j-1]  over all 0 ≤ i ≤ j ≤ n

– we allow i = j so that the sub-array A[i:j-1] can be empty

> Brute force solution 1:
– for every i = 0 .. n, for every j = i .. n, compute A[i] + ... + A[j-1]

> take the maximum of all these
– takes Θ(n3) time

Maximum Sub-array Sum



> Problem: Given an array A of integers,
find max of A[i] + ... + A[j-1]  over all 0 ≤ i ≤ j ≤ n

– we allow i = j so that the sub-array A[i:j-1] can be empty

> Brute force solution 1:
– takes Θ(n3) time

> Brute force solution 2:
– compute B[i] = A[i] + A[i+1] + ... + A[n-1] for all i in Θ(n) time
– for every i = 0 .. n, for every j = i .. n, compute B[i] – B[j]

> take the maximum of all these

Maximum Sub-array Sum



> Problem: Given an array A of integers,
find max of A[i] + ... + A[j-1]  over all 0 ≤ i ≤ j ≤ n

– we allow i = j so that the sub-array A[i:j-1] can be empty

> Brute force solution 1:
– takes Θ(n3) time

> Brute force solution 2:
– for every i = 0 .. n, for every j = i .. n, compute B[i] – B[j]

> take the maximum of all these
– takes Θ(n2) time

Maximum Sub-array Sum



> Apply divide & conquer...

1. Divide A into halves, A[0..n/2-1] and A[n/2..n-1]

2. Recursively solve the sub-problem on each half
> sums that start & end on one side

3. Combine by considering sums starting on left, ending on right
> max (A[i] + ... + A[n/2-1]) + (A[n/2] + ... + A[j-1])

Maximum Sub-array Sum



> Apply divide & conquer...

3. Combine by considering sums starting on left, ending on right

>maximize A[i] + ... + A[j-1]

Maximum Sub-array Sum



> max A[i] + ... + A[j-1]
= max A[i] + ... + A[n/2-1] + A[n/2] + ... + A[j-1]
– can always do this since i ≤ n/2 ≤ j 
– splits sum into two parts

> sum of suffix of first half
> sum of prefix of second half

Maximum Sub-array Sum

i jn/2



> Choice of i only affects first part and
Choice of j only affects second part
– can maximize the two independently

> max A[i] + ... + A[j-1]
= (max A[i] + ... + A[n/2-1]) + (max A[n/2] + ... + A[j-1])

Maximum Sub-array Sum

i jn/2



> Apply divide & conquer...

3. Combine by considering sums starting on left, ending on right

>max (A[i] + ... + A[n/2-1]) + (A[n/2] + ... + A[j-1])
= (max A[i] + ... + A[n/2-1]) + (max A[n/2] + ... + A[j-1])

> that equation is the key insight of the algorithm!
– max is achieved by separately maximizing each half
– similar ideas in dynamic programming (also greedy)

Maximum Sub-array Sum



> Apply divide & conquer...

3. Combine by considering sums starting on left, ending on right
>max (A[i] + ... + A[n/2-1]) + (A[n/2] + ... + A[j-1])

= (max A[i] + ... + A[n/2-1]) + (max A[n/2] + ... + A[j-1])
> compute sums A[i] + ... + A[n/2-1] for each i = 0 .. n/2-1

– takes Θ(n) time
– take the maximum of these

> compute sums A[n/2] + ... + A[j-1] for each j = n/2 .. n-1 
– takes Θ(n) time

> take sum of two maximums

Maximum Sub-array Sum



> Apply divide & conquer...

1. Divide A into halves, A[0..n/2-1] and A[n/2..n-1]

2. Recursively solve the sub-problem on each half
> sums that start & end on one side

3. Combine by considering sums starting on left, ending on right
> find max sum crossing divide with scan left & scan right

> Divide + combine in Θ(n), so Θ(n log n) by master thm

Maximum Sub-array Sum



> Maximum sub-array sum
> Maximum single-sell profit
> Intersecting horz & vert segments

Outline for Today



> Problem: Given a list of prices on each day, find the days on 
which to buy & sell that would have achieved max profit
– maximize (sell price – buy price)

Maximum Single-Sell Profit

buy

sell



> Issue: actually want to minimize percentage increase
– (i.e., increase per dollar bought)
– can spend whatever amount you want on the stock (simplification)

> max (pricesell – pricebuy) / pricebuy

= max pricesell / pricebuy – 1
= max pricesell / pricebuy

= max log(pricesell / pricebuy)
= max log(pricesell) – log(pricebuy)
– original problem with log prices instead

Maximum Single-Sell Profit

log is monotonically increasing,
so it does not change order,
so it does not change maximum



> Apply divide & conquer

1. Divide prices into first half and second half

2. Recursively solve each sub-problem
> gives best with both buy & sell on same half

3. Combine by considering best buy on one half and sell on other half
> only need to consider buying in first half and selling in second half

because we cannot buy after we sell
– (actually, you can... it’s called short selling, but that’s disallowed here)

Maximum Single-Sell Profit



> Apply divide & conquer

1. Combine by considering best (buy in first half, sell in second half)

> Q: what is the best price to buy at in first half?
> A: minimum price

> Q: what is the best price to sell at in second half?
> A: maximum price

Maximum Single-Sell Profit



> Apply divide & conquer

1. Divide prices into first half and second half

2. Recursively solve each sub-problem
> gives best with both buy & sell on same half

3. Combine by considering best buy on one half and sell on other half
> find (min(first half), max(second half)) in O(n) time

> Running time is O(n log n) by master theorem

Maximum Single-Sell Profit



> Q: Is this really easier to solve by divide and conquer?
> A: No!

> Linear-time single-pass (right to left) algorithm:
– keep track of max profit seen so far
– keep track of the maximum price seen so far

> best available price to sell in the future
– if current price – max price > max profit:

> make this the max price

> This is O(n) — faster than divide & conquer solution

Maximum Single-Sell Profit



> Q: Is this really easier to solve by divide and conquer?
> A: No!

> Divide & Conquer may still help us find the solution
> BUT ask yourself when you’re done whether it’s really needed

Maximum Single-Sell Profit



> Maximum sub-array sum
> Maximum single-sell profit
> Intersecting horz & vert segments

Outline for Today



> Problem: given a set of horizontal &
vertical segments, count the number
of points where they intersect

> Brute force solution:
– check every pair to see if they intersect
– Θ(n2) pairs to check if n/2 vertical and n/2 horizontal segments

Picture from www.inrg.csie.ntu.edu.tw/algorithm2014/course/Divide%20&%20Conquer.pdf

Count Intersections of
Horz & Vert Segments



> Apply divide & conquer...

1. Divide horizontally into two halves
> vertical segments end up on one side
> but horizontal segments could cross the dividing line
> leave those out

2. Recursively solve each sub-problem

3. Combine by adding intersections with missing ones
> every other intersection is accounted for
> those completely on left and right cannot intersect

Count Intersections of
Horizontal & Vertical Segments



> Sub-problem: find intersections with segments left out
– these are horizontal segments, so they intersect with vertical ones
– have a list of all the left out horizontal segments

> Idea: sort vertical & left out horizontal segments together
– horizontal segments appear twice (once for each endpoint)
– can do the sort before-hand...

> only adds O(n log n) to total running time

Count Intersections of
Horizontal & Vertical Segments



Count Intersections of
Horz & Vert Segments

> Idea: sort vert & left out vert segments
– horizontal segments appear twice
– can do the sort before-hand...

> only adds O(n log n) to total running time

> Example: [1A, 1B, 2, 3, 4c, 5B, 6, 6A, 7, 8C]
– subscript indicates horizontal segment
– (in Java, this would be a list of objects)

> Approach: scan from right & left to dividing line
– track horizontal segments & look for intersections with vertical

1  2  3  4  5  6  7  8

A

B

C



Count Intersections of
Horz & Vert Segments

> Idea: sort vert & left out vert segments
– horizontal segments appear twice

> Example: [1A, 1B, 2, 3, 4c, 5B, 6, 6A, 7, 8C]
– subscript indicates horizontal segment

> Scan right to dividing line
– keep an AVL tree of horizontal segments seen so far
– for each vertical segment:

> use range search on AVL tree to find intersecting horz segments
> takes O(log n + #intersections) time

1  2  3  4  5  6  7  8

A

B

C



> Apply divide & conquer...

1. Divide horizontally into two halves
> leaving out horizontal segments that span two halves

2. Recursively solve each sub-problem

3. Combine by adding intersections with missing ones
> O(n log n + #intersections) scan to left & right to count these

> Running time is O(n1+ε + #intersections) by master

Count Intersections of
Horizontal & Vertical Segments



> Q: Is this really easier to solve by divide and conquer?

> A: No!
– could just do this linear scan the entire way across
– running time is O(n log n + #intersections)

> Many faster algorithms for this problem...
– from Bentley, Tarjan, etc.

Count Intersections of
Horizontal & Vertical Segments


