CSE 417 Divide & Conquer (pt 4) More Examples

UNIVERSITY of WASHINGTON

Reminders

> HW3 due Wednesday

- get started right away on understanding the algorithm
- will be quick to do the drawing *once you understand it fully*

> HW2 postscript

- good resume material
- saw the impact of regularization
 - > penalty improves prediction accuracy (ex. of Occam's razor)
- esp. useful for model selection on "small data" problems
- always keep an eye out for applications of binary search

Divide & Conquer Review

> Apply the steps:

- 1. Divide the input data into 2+ parts
- 2. Recursively solve the problem on each part
- 3. Combine the sub-problem solutions into a problem solution

> Key questions:

- 1. Can you solve the problem by combining solutions from sub-problems?
- 2. Is that easier than solving it directly?

> Use master theorem to calculate the running time

Review from last Time

> Counting Inversions

- combine: add inversions (i, j) with i in first half and j in second half
- optimized by using binary search ~> faster than O(n^{1+ε}) for any ε > 0
 eventually realized sequence of linear searches is O(n) ~> so O(n log n) in total

> Voronoi diagrams

> Closest Pair of Points

- optimize by comparing (p,q) if |p.x q.x| < d and |p.y q.y| < d
- careful analysis reveals this is O(n) worst case ~> O(n log n) overall
 - > would have seen it was fast in practice anyway

Outline for Today

> Maximum sub-array sum

- > Maximum single-sell profit
- > Intersecting horz & vert segments

> Famous interview question from the 1980–90s

- Jon Bentley wrote about the problem in CACM 1984
- no longer used, I think, since it's too well known
- > Good algorithms question: has multiple solutions
 - the best solution uses dynamic programming
 - can also be solved with divide & conquer (today)
- > HW4 is similar to this problem

> **Problem**: Given an array A of integers, find max of A[i] + ... + A[j-1] over all $0 \le i \le j \le n$

- we allow i = j so that the sub-array A[i:j-1] can be empty
- note that A[i]'s can be **negative**

> Example:

A = [31, -41, 59, 26, -53, 58, 97, -93, -23, 84]

> Maximum sum is A[2] + ... A[6] = 59 + ... + 97 = 187

- includes a negative number, -53

> **Problem**: Given an array A of integers,

- find max of A[i] + ... + A[j-1] over all $0 \le i \le j \le n$
- we allow i = j so that the sub-array A[i:j-1] can be empty
- > Brute force solution 1:
 - for every i = 0 .. n, for every j = i .. n, compute A[i] + ... + A[j-1]
 > take the maximum of all these
 - takes Θ(n³) time

> **Problem**: Given an array A of integers,

- find max of A[i] + ... + A[j-1] over all $0 \le i \le j \le n$
- we allow i = j so that the sub-array A[i:j-1] can be empty
- > Brute force solution 1:
 - takes Θ(n³) time
- > Brute force solution 2:
 - compute B[i] = A[i] + A[i+1] + ... + A[n-1] for all i in $\Theta(n)$ time
 - for every i = 0 .. n, for every j = i .. n, compute B[i] B[j]
 - > take the maximum of all these

> **Problem**: Given an array A of integers,

- find max of A[i] + ... + A[j-1] over all $0 \le i \le j \le n$
- we allow i = j so that the sub-array A[i:j-1] can be empty
- > Brute force solution 1:
 - takes Θ(n³) time
- > Brute force solution 2:
 - for every i = 0 .. n, for every j = i .. n, compute B[i] B[j]
 - > take the maximum of all these
 - takes $\Theta(n^2)$ time

- > Apply divide & conquer...
 - 1. Divide A into halves, A[0..n/2-1] and A[n/2..n-1]
 - 2. Recursively solve the sub-problem on each half > sums that start & end on one side
 - 3. Combine by considering sums starting on left, ending on right > max (A[i] + ... + A[n/2-1]) + (A[n/2] + ... + A[j-1])

- > Apply divide & conquer...
 - 3. Combine by considering sums starting on left, ending on right
 > maximize A[i] + ... + A[j-1]

- > max A[i] + ... + A[j-1] = max A[i] + ... + A[n/2-1] + A[n/2] + ... + A[j-1]
 - can always do this since $i \le n/2 \le j$
 - splits sum into two parts
 - > sum of suffix of first half
 - > sum of prefix of second half

- > Choice of i only affects first part and Choice of j only affects second part
 - can maximize the two independently
- > max A[i] + ... + A[j-1] = (max A[i] + ... + A[n/2-1]) + (max A[n/2] + ... + A[j-1])

- > Apply divide & conquer...
 - 3. Combine by considering sums starting on left, ending on right
 - > max (A[i] + ... + A[n/2-1]) + (A[n/2] + ... + A[j-1]) = (max A[i] + ... + A[n/2-1]) + (max A[n/2] + ... + A[j-1])
 - > that equation is the key insight of the algorithm!
 - max is achieved by **separately** maximizing each half
 - similar ideas in dynamic programming (also greedy)

- > Apply divide & conquer...
 - 3. Combine by considering sums starting on left, ending on right
 > max (A[i] + ... + A[n/2-1]) + (A[n/2] + ... + A[j-1])
 = (max A[i] + ... + A[n/2-1]) + (max A[n/2] + ... + A[j-1])
 > compute sums A[i] + ... + A[n/2-1] for each i = 0 .. n/2-1
 takes \O(n) time
 take the maximum of these
 > compute sums A[n/2] + ... + A[j-1] for each j = n/2 .. n-1
 takes \O(n) time
 takes \O(n) time
 > take sum of two maximums

- > Apply divide & conquer...
 - 1. Divide A into halves, A[0..n/2-1] and A[n/2..n-1]
 - 2. Recursively solve the sub-problem on each half > sums that start & end on one side
 - 3. Combine by considering sums starting on left, ending on right > find max sum crossing divide with scan left & scan right
- > Divide + combine in $\Theta(n)$, so $\Theta(n \log n)$ by master thm

Outline for Today

- > Maximum sub-array sum
- > Maximum single-sell profit 🤇 🧲 💳

> Intersecting horz & vert segments

- > **Problem**: Given a list of prices on each day, find the days on which to buy & sell that would have achieved max profit
 - maximize (sell price buy price)

> **Issue**: actually want to minimize percentage increase

- (i.e., increase per dollar bought)
- can spend whatever amount you want on the stock (simplification)
- > max (price_{sell} price_{buy}) / price_{buy}
 - = max price_{sell} / price_{buy} 1
 - = max price_{sell} / price_{buy}
 - = max log(price_{sell} / price_{buy})
 - = max log(price_{sell}) log(price_{buy})
 - original problem with log prices instead

log is monotonically increasing, so it does not change order, so it does not change maximum

> Apply divide & conquer

- 1. Divide prices into first half and second half
- 2. Recursively solve each sub-problem
 - > gives best with both buy & sell on same half
- 3. Combine by considering best buy on one half and sell on other half
 - > only need to consider buying in first half and selling in second half because we cannot buy after we sell
 - (actually, you can... it's called short selling, but that's disallowed here)

- > Apply divide & conquer
 - 1. Combine by considering best (buy in first half, sell in second half)
 - > Q: what is the best price to buy at in first half?
 - > A: minimum price
 - > Q: what is the best price to sell at in second half?
 - > A: maximum price

- > Apply divide & conquer
 - 1. Divide prices into first half and second half
 - 2. Recursively solve each sub-problem> gives best with both buy & sell on same half
 - Combine by considering best buy on one half and sell on other half
 > find (min(first half), max(second half)) in O(n) time
- > Running time is O(n log n) by master theorem

> **Q**: Is this *really* easier to solve by divide and conquer?

> **A**: No!

- > Linear-time single-pass (right to left) algorithm:
 - keep track of max profit seen so far
 - keep track of the maximum price seen so far
 best available price to sell in the future
 - if current price max price > max profit:
 - > make this the max price

> This is O(n) — faster than divide & conquer solution

- > **Q**: Is this *really* easier to solve by divide and conquer?
- > **A**: No!
- > Divide & Conquer may still help us **find** the solution
- > BUT ask yourself when you're done whether it's really needed

Outline for Today

- > Maximum sub-array sum
- > Maximum single-sell profit
- > Intersecting horz & vert segments

Count Intersections of Horz & Vert Segments

- > Problem: given a set of horizontal & vertical segments, count the number of points where they intersect
- > Brute force solution:
 - check every pair to see if they intersect
 - $\Theta(n^2)$ pairs to check if n/2 vertical and n/2 horizontal segments

Picture from www.inrg.csie.ntu.edu.tw/algorithm2014/course/Divide%20&%20Conquer.pdf

Count Intersections of Horizontal & Vertical Segments

- > Apply divide & conquer...
 - 1. Divide horizontally into two halves
 - > vertical segments end up on one side
 - > but horizontal segments could cross the dividing line
 - > leave those out
 - 2. Recursively solve each sub-problem
 - 3. Combine by adding intersections with missing ones
 - > every other intersection is accounted for
 - > those completely on left and right cannot intersect

Count Intersections of Horizontal & Vertical Segments

> **Sub-problem**: find intersections with segments left out

- these are horizontal segments, so they intersect with vertical ones
- have a list of all the left out horizontal segments

> Idea: sort vertical & left out horizontal segments together

- horizontal segments appear twice (once for each endpoint)
- can do the sort before-hand...
 - > only adds O(n log n) to total running time

W

Count Intersections of Horz & Vert Segments

> Idea: sort vert & left out vert segments

- horizontal segments appear twice
- can do the sort before-hand...> only adds O(n log n) to total running time
- > Example: $[1_A, 1_B, 2, 3, 4_c, 5_B, 6, 6_A, 7, 8_C]$
 - subscript indicates horizontal segment
 - (in Java, this would be a list of objects)
- > Approach: scan from right & left to dividing line
 - track horizontal segments & look for intersections with vertical

Count Intersections of Horz & Vert Segments

> Idea: sort vert & left out vert segments

- horizontal segments appear twice
- > Example: $[1_A, 1_B, 2, 3, 4_c, 5_B, 6, 6_A, 7, 8_C]$
 - subscript indicates horizontal segment
- > Scan right to dividing line
 - keep an AVL tree of horizontal segments seen so far
 - for each vertical segment:
 - > use range search on AVL tree to find intersecting horz segments
 - > takes O(log n + #intersections) time

Count Intersections of Horizontal & Vertical Segments

- > Apply divide & conquer...
 - Divide horizontally into two halves
 > leaving out horizontal segments that span two halves
 - 2. Recursively solve each sub-problem
 - Combine by adding intersections with missing ones
 O(n log n + #intersections) scan to left & right to count these
- > Running time is $O(n^{1+\epsilon} + #intersections)$ by master

Count Intersections of Horizontal & Vertical Segments

> **Q**: Is this *really* easier to solve by divide and conquer?

> **A**: No!

- could just do this linear scan the entire way across
- running time is O(n log n + #intersections)
- > Many faster algorithms for this problem...
 - from Bentley, Tarjan, etc.

W