
CSE 417
Divide & Conquer (pt 3)
More Examples



> HW2 due Sunday

> Extra office hours after class (CSE 212)

> HW3 will be posted tomorrow
– construct Voronoi diagrams on paper

using the algorithm we discuss today
– (should be quick)

Reminders



> Apply the steps:
1. Divide the input data into 2+ parts
2. Recursively solve the problem on each part
3. Combine the sub-problem solutions into a problem solution

> Key questions:
1. Can you solve the problem by combining solutions from sub-problems?
2. Is that easier than solving it directly?

> Use master theorem to calculate the running time

Divide  & Conquer Review



> Integer Multiplication: Karatsuba
– key point: only 3 recursive calls, so T(n) = 3 T(n/2) + O(n) ~> O(nlg 3) = O(n1.585)
– sub-problems are multiplications on numbers half as large
– Matrix Multiplication: Strassen

> 7 T(n/2) + O(n2) ~> O(nlg 7) = O(n2.808)

> FFT: Cooley & Tukey
– key point: divides data into odd and even indexes
– 2 T(n/2) + O(n) ~> O(n log n)
– Integer Multiplication: Schönhage & Strassen

> use FFTs to reduce to O(n) multiplication problem — O(n log n log log n)

Famous Algorithm Review



> Counting inversions
> Voronoi diagrams
> Closest pair of points

Outline for Today



> Problem: Given an array A of length n, count the number of 
index pairs (i, j) such that i < j but A[i] > A[j]

> Example: if A is sorted, then there are 0 inversions

> Example: if A is in decreasing order, there are n(n-1)/2 inversions
– there are n(n-1)/2 pairs (i, j) satisfying 0 ≤ i < j < n
– every pair is an inversion

Counting Inversions



> Brute-force solution:

int count = 0;
for (int i = 0; i < n; i++)

for (int j = i + 1; j < n; j++)
if (A[i] > A[j])

count += 1;
return count;

> Runs in Θ(n2) time

Counting Inversions: Brute Force



> Measure the difference between two lists of rankings of n things
– music, candidates, web sites, etc.

> Replace each element in one list with the ranking (a number) of 
that item in the second list

> Example: ranking Beetles band members
– Your List: John, Paul, George, Ringo
– My List: Paul, George, John, Ringo
– Result is [3, 1, 2, 4]

> has 2 inversions (3,1) and (3,2)

Counting Inversions: Application



> Measure the difference between two lists of rankings of n things
– music, candidates, web sites, etc.

> Replace each element in one list with the ranking (a number) of 
that item in the second list

> If rankings are the same, result is sorted, so no inversions
– use number of inversions as a measure of how close they are

> See the textbook for more applications

Counting Inversions: Application



> Apply divide & conquer...

1. Divide A[0..n-1] into halves, A[0..n/2-1] and A[n/2..n-1]
> same as merge sort

2. Recursively count inversions in each half

3. Combine...

Counting Inversions: Divide & Conquer



> Combine step...

> Consider any pair of indices (i, j)
Four possibilities
– i in first half, j in first half
– i in first half, j in second half
– i in second half, j in first half
– i in second half, j in second half

Counting Inversions: Divide & Conquer

from recursive call on A[0..n/2-1]

from recursive call
on A[n/2..n-1]

doesn’t satisfy i < j

need to count these...



> Combine step...
– count pairs (i, j) with i in first half, j in second half, and A[i] > A[j]
– answer is that count plus answers from two recursive calls

> Brute force solution:

for (int i = 0; i < n/2; i++)
for (int j = n/2; j < n; j++)
if (A[i] > A[j])
count++;

> Runs in Θ((n/2)(n/2)) = Θ(n2) time

Counting Inversions: Divide & Conquer



> Need a faster way to answer this question:

How many elements in A[n/2..n-1] are smaller than A[i]?

> What technique have we learned that can answer
this sort of question?

> Can apply binary search if A[n/2..n-1] is sorted
– so let’s sort it
– one non-obvious trick: I’ll do this recursively

Counting Inversions: Divide & Conquer



> Apply divide & conquer...

1. Divide A[0..n-1] into halves, A[0..n/2-1] and A[n/2..n-1]

2. Recursively sort & count inversions in each half

3. Combine:
> for i = 0 .. n/2, binary search for A[i] in A[n/2..n-1]

– index gives number of j’s with A[i] > A[j]
– add to count of inversions from recursive calls

> apply “two finger” merge to make A sorted

Counting Inversions: Divide & Conquer



> Apply divide & conquer...

> Divide + combine is O(n log n) because of n/2 binary searches
– C = log2 2 = 1, so compare to nC = n
– master theorem does not give a specific answer

> must be Ω(n log n) since divide + combine is Ω(n)
> must be O(n1+ε) for any ε > 0 since divide + combine is O(n1+ε)
> could be O(n (log n)2) or something like that (can’t tell from this analysis)

> We can improve it exactly as in earlier examples...
– binary searches are doing a lot of wasted work

Counting Inversions: Divide & Conquer



> Apply divide & conquer...

> Divide + combine is O(n log n) because of n/2 binary searches

> We can improve it exactly as in earlier examples...
– since A[0] ≤ A[1] ≤ ... (it’s sorted now),

indexes returned by each binary search can only increase as we go
– rather than binary search, just use linear search

> total number of steps to the right is n/2 so total time is O(n)

> This is another ”two finger” algorithm

Counting Inversions: Divide & Conquer



> Apply divide & conquer...

> Divide + combine is O(n log n) because of n/2 binary searches

> We can improve it exactly as in earlier examples...
– sequence of linear searches takes O(n) time

> This is another ”two finger” algorithm
– in fact, the fingers make the same steps as in merging
– in fact, we could count and merge simultaneously (exercise!)

Counting Inversions: Divide & Conquer



> Apply divide & conquer...

1. Divide A[0..n-1] into halves, A[0..n/2-1] and A[n/2..n-1]

2. Recursively sort & count inversions in each half

3. Combine with “two finger” merge & count inversions

> Divide + combine in O(n) time, so O(n log n)
– only slightly faster than binary search approach
– BUT we look much smarter after covering our tracks

Counting Inversions: Divide & Conquer



> Counting inversions
> Voronoi diagrams
> Closest pair of points

Outline for Today



> Given a set of sites p1, ..., pn,
separate the plane into the
regions closest to each site

> Example on the right has 14 sites,
so 14 regions as well

> (Coding details are complicated, so we’ll stay high-level.)

Picture from par.cse.nsysu.edu.tw/~cbyang/course/algo/algonote/algo4.ppt

Voronoi Diagrams



> Brute force solution:
– for each site, find its Voronoi region

> Finding the Voronoi region for a site:
– for every other site, find the separating line

> line that is equal distance from each site
> perpendicular bisector of line segment drawn between them

– somehow fit the closest ones together into the region boundary (complicated)

> Ω(n) per region, so Ω(n2) all together

Voronoi Diagrams



> Divide the sites in half
by drawing a line
– usually horizontal or vertical
– in principle, any line is fine

> Recursively find the Voronoi diagrams for each half
– use brute force when there are 1–3 sites (easy cases)

Picture from par.cse.nsysu.edu.tw/~cbyang/course/algo/algonote/algo4.ppt

Voronoi Diagrams
Divide & Conquer



> Only segments missing are
where two sides meet
– already know which site is

closest on each side
– only need to figure out

which side is closer

> Find piecewise-linear, separating path on boundary
– equal distance between a site on each side

Picture from par.cse.nsysu.edu.tw/~cbyang/course/algo/algonote/algo4.ppt

Voronoi Diagrams
Divide & Conquer



> Use a “two finger” algorithm

> Start with two highest sites
near the boundary
– p6 and p9 in the picture
– draw bisector between them

> Extend the bisector until it hits edge of a Voronoi region
– one of those sites is no longer closest on that side

Voronoi Diagrams
Divide & Conquer



> “Two finger” algorithm
– finger on site from each side
– drawing bisector between them

> Extend bisector to edge of
a Voronoi region
– one of those sites is no longer closest on that side
– move finger to new closest site
– start drawing the new bisector (must connect!)

Voronoi Diagrams
Divide & Conquer



> “Two finger” algorithm
– finger on site from each side
– drawing bisector between them
– move finger when bisector

crosses edge of Voronoi region

> Done when current bisector goes off to infinity

> Bisectors are equal distance between closest two pi’s

Voronoi Diagrams
Divide & Conquer



> Combine step takes time
proportional to number
of sites on the boundary

> Worst case is O(n)
– typically only a fraction of n sites are examined

> Master theorem says we get an O(n log n) algorithm
– huge improvement over brute force

Picture from par.cse.nsysu.edu.tw/~cbyang/course/algo/algonote/algo4.ppt

Voronoi Diagrams
Divide & Conquer



> HW3 asks you to compute a Voronoi diagram on paper
– divide by copying half the sites to two separate pieces of paper
– combine by copying answers back and then adding separating path

> See the assignment for more details on the algorithm

> Note: your answer does not have to be pixel perfect
– can just eye-ball the bisectors
– key is to understand the algorithm:

> why is it correct? — only boundary is missing & this finds it
> why is it efficient? — O(n) to compute boundary

HW3: Voronoi diagrams



> Counting inversions
> Voronoi diagrams
> Closest pair of points

Outline for Today



> Problem: Given a set of points p1, ..., pn in the plane, find the pair 
of distinct points (pi, pj) with minimum distance |pi – pj|

> Brute force solution:
– compute the distance of every pair; keep track of the closest
– takes Θ(n2) time since there are n(n-1)/2 = Θ(n2) pairs

Closest Pair of Points



> Apply divide & conquer...

1. Divide the points horizontally
> let L & R be the two halves

2. Recursively finds the closest pair in L and R
> let d be the smallest distance of the two

3. Combine: find closest pair p in L, q in R
> return closest of the three pairs

Picture from www.inrg.csie.ntu.edu.tw/algorithm2014/course/Divide%20&%20Conquer.pdf

Closest Pair of Points



> Apply divide & conquer...

1. Divide the points horizontally

2. Recursively find the closest pairs in L and R
> let d be the smallest distance of the two

3. Combine: find closest pair p in L, q in R with |p – q| < d
> only need to consider p in SL and q in SR

> where SL = L within d of line, SR = R within d of line

Picture from www.inrg.csie.ntu.edu.tw/algorithm2014/course/Divide%20&%20Conquer.pdf

Closest Pair of Points



> Apply divide & conquer...

3. Combine: find closest pair p in L, q in R
> only need to consider p in SL and q in SR

> Unfortunately, this is still too many to check by brute force...
could be, say, n/6 on each side, giving Θ((n/6)(n/6)) = Θ(n2) time

> Will reduce the search by considering vertical distance also...

Closest Pair of Points



> Apply divide & conquer...

3. Combine: find closest pair p in L, q in R
> only need to consider p in SL and q in SR

> Before we start, sort all the points by y-coordinate.
> Now get SL and SR sorted by y-coordinate in O(n) time (by filtering big list)

> For each p in SL, just compare to those in SR
whose y-coordinate is within d of p’s

Closest Pair of Points



> Apply divide & conquer...

3. Combine: find closest pair p in L, q in R
> only need to consider p in SL and

q in SR whose y-coordinate is within d of p’s

> Three finger algorithm:
– one finger on p in SL

– one finger first q in SR with q.y ≥ p.y - d
– one finger last q in SR with q.y ≤ p.y + d

Closest Pair of Points

O(n) total finger moves

compare p to all q’s in this range



> Apply divide & conquer...

3. Combine: find closest pair p in L, q in R
> only need to consider p in SL and

q in SR whose y-coordinate is within d of p’s

> Three finger algorithm:
– one finger on p in SL

– one finger first q in SR with q.y ≥ p.y - d
– one finger last q in SR with q.y ≤ p.y + d

Closest Pair of Points

compare p to all q’s in this range

Q: how many are there?



Want to check for points Will check all points
in this shaded region: in this d x 2d region:

Pictures from www.inrg.csie.ntu.edu.tw/algorithm2014/course/Divide%20&%20Conquer.pdf

Closest Pair of Points



> Q: How many points could be
in the d x 2d box?

> A: no more than 6 (see picture)
– key point is that no points in R are closer than d apart!
– this limits the number that could be close to p to O(1)

> Example where a lot of elbow grease and problem-
specific analysis is needed to find the best solution
– used general techniques to get most of the way there

Closest Pair of Points



> Apply divide & conquer...

1. Divide the points into L & R

2. Recursively finds the closest pair in L and R
> let d be the smallest distance of the two

3. Combine: find closest pair p in L, q in R with |p – q| < d
> only need to consider p in SL and

q in SR whose y-coordinate is within d of p’s
> only O(1) such points for each p
> return smallest of the 3 pairs above

Closest Pair of Points



> Apply divide & conquer...

1. Divide the points into L & R

2. Recursively finds the closest pair in L and R

3. Combine: find closest pair p in L, q in R with |p – q| < d
> each p is compared to O(1) q’s, so O(n) time

> Divide + combine in O(n) time
> Running time is O(n log n) by master theorem

Closest Pair of Points


