CSE 417 Divide \mathcal{E} Conquer (pt 3) More Examples

Reminders

> HW2 due Sunday
> Extra office hours after class (CSE 212)
> HW3 will be posted tomorrow

- construct Voronoi diagrams on paper using the algorithm we discuss today
- (should be quick)

Divide \& Conquer Review

> Apply the steps:

1. Divide the input data into $2+$ parts
2. Recursively solve the problem on each part
3. Combine the sub-problem solutions into a problem solution
> Key questions:
4. Can you solve the problem by combining solutions from sub-problems?
5. Is that easier than solving it directly?
> Use master theorem to calculate the running time

Famous Algorithm Review

> Integer Multiplication: Karatsuba

- key point: only 3 recursive calls, so $T(n)=3 T(n / 2)+O(n) \sim>O\left(n^{\lg 3}\right)=O\left(n^{1.585}\right)$
- sub-problems are multiplications on numbers half as large
- Matrix Multiplication: Strassen

$$
>7 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}\left(\mathrm{n}^{2}\right) \sim \mathrm{O}\left(\mathrm{n}^{\lg 7}\right)=\mathrm{O}\left(\mathrm{n}^{2.808}\right)
$$

> FFT: Cooley \& Tukey

- key point: divides data into odd and even indexes
- $2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n}) \sim \mathrm{O}(\mathrm{n} \log \mathrm{n})$
- Integer Multiplication: Schönhage \& Strassen
> use FFTs to reduce to $\mathrm{O}(\mathrm{n})$ multiplication problem $-\mathrm{O}(\mathrm{n} \log \mathrm{n} \log \log \mathrm{n})$

Outline for Today

> Counting inversions
> Voronoi diagrams
> Closest pair of points

Counting Inversions

> Problem: Given an array A of length n, count the number of index pairs (i, j) such that $\mathrm{i}<\mathrm{j}$ but $A[i]>A[j]$
> Example: if A is sorted, then there are 0 inversions
> Example: if A is in decreasing order, there are $\mathrm{n}(\mathrm{n}-1) / 2$ inversions

- there are $n(n-1) / 2$ pairs (i, j) satisfying $0 \leq i<j<n$
- every pair is an inversion

Counting Inversions: Brute Force

> Brute-force solution:

```
int count = 0;
for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
        if (A[i] > A[j])
        count += 1;
    return count;
\(>\) Runs in \(\Theta\left(n^{2}\right)\) time
```


Counting Inversions: Application

> Measure the difference between two lists of rankings of n things

- music, candidates, web sites, etc.
> Replace each element in one list with the ranking (a number) of that item in the second list
> Example: ranking Beetles band members
- Your List: John, Paul, George, Ringo
- My List: Paul, George, John, Ringo
- Result is [3, 1, 2, 4]
> has 2 inversions $(3,1)$ and $(3,2)$

Counting Inversions: Application

> Measure the difference between two lists of rankings of n things

- music, candidates, web sites, etc.
> Replace each element in one list with the ranking (a number) of that item in the second list
> If rankings are the same, result is sorted, so no inversions
- use number of inversions as a measure of how close they are
> See the textbook for more applications

Counting Inversions: Divide \& Conquer

> Apply divide \& conquer...

1. Divide $A[0 . . n-1]$ into halves, $A[0 . . n / 2-1]$ and $A[n / 2 . . n-1]$
> same as merge sort
2. Recursively count inversions in each half
3. Combine...

Counting Inversions: Divide \& Conquer

> Combine step...
$>$ Consider any pair of indices (i, j) Four possibilities

- in in first half, \mathbf{j} in first half
- \mathbf{i} in first half, \mathbf{j} in second half
- \mathbf{i} in second half, \mathbf{j} in first half
- in in second half, \mathbf{j} in second half
from recursive call on $A[0 . . n / 2-1]$
need to count these...
doesn't satisfy $\mathrm{i}<\mathrm{j}$
from recursive call
on $A[n / 2 . . n-1]$

Counting Inversions: Divide \& Conquer

> Combine step...

- count pairs (i, j) with i in first half, j in second half, and $A[i]>A[j]$
- answer is that count plus answers from two recursive calls
$>$ Brute force solution:

```
for (int i = 0; i < n/2; i++)
    for (int j = n/2; j < n; j++)
        if (A[i] > A[j])
            count++;
```

$>$ Runs in $\Theta((n / 2)(n / 2))=\Theta\left(n^{2}\right)$ time

Counting Inversions: Divide \& Conquer

> Need a faster way to answer this question:
How many elements in $A[n / 2 . n-1]$ are smaller than $A[i]$?
> What technique have we learned that can answer this sort of question?
> Can apply binary search if $A[n / 2 . . n-1]$ is sorted

- so let's sort it
- one non-obvious trick: l'll do this recursively

Counting Inversions: Divide \& Conquer

> Apply divide \& conquer...

1. Divide $A[0 . . n-1]$ into halves, $A[0 . . n / 2-1]$ and $A[n / 2 . . n-1]$
2. Recursively sort \& count inversions in each half
3. Combine:
$>$ for $\mathrm{i}=0$.. $\mathrm{n} / 2$, binary search for $\mathrm{A}[\mathrm{i}]$ in $\mathrm{A}[\mathrm{n} / 2 . . \mathrm{n}-1]$

- index gives number of j 's with $A[i]>A[j]$
- add to count of inversions from recursive calls
> apply "two finger" merge to make A sorted

Counting Inversions: Divide \& Conquer

> Apply divide \& conquer...
> Divide + combine is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ because of $\mathrm{n} / 2$ binary searches
$-C=\log _{2} 2=1$, so compare to $n^{C}=n$

- master theorem does not give a specific answer
$>$ must be $\Omega(n \log n)$ since divide + combine is $\Omega(n)$
$>$ must be $\mathrm{O}\left(\mathrm{n}^{1+\varepsilon}\right)$ for any $\varepsilon>0$ since divide + combine is $\mathrm{O}\left(\mathrm{n}^{1+\varepsilon}\right)$
$>$ could be $\mathrm{O}\left(\mathrm{n}(\log \mathrm{n})^{2}\right)$ or something like that (can't tell from this analysis)
> We can improve it exactly as in earlier examples...
- binary searches are doing a lot of wasted work

Counting Inversions: Divide \& Conquer

> Apply divide \& conquer...
> Divide + combine is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ because of $\mathrm{n} / 2$ binary searches
> We can improve it exactly as in earlier examples...

- since $A[0] \leq A[1] \leq \ldots$ (it's sorted now), indexes returned by each binary search can only increase as we go
- rather than binary search, just use linear search
$>$ total number of steps to the right is $n / 2$ so total time is $O(n)$
> This is another "two finger" algorithm

Counting Inversions: Divide \& Conquer

> Apply divide \& conquer...
> Divide + combine is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ because of $\mathrm{n} / 2$ binary searches
> We can improve it exactly as in earlier examples...

- sequence of linear searches takes $O(n)$ time
> This is another "two finger" algorithm
- in fact, the fingers make the same steps as in merging
- in fact, we could count and merge simultaneously (exercise!)

Counting Inversions: Divide \& Conquer

> Apply divide \& conquer...

1. Divide $A[0 . . n-1]$ into halves, $A[0 . . n / 2-1]$ and $A[n / 2 . . n-1]$
2. Recursively sort \& count inversions in each half
3. Combine with "two finger" merge \& count inversions
> Divide + combine in O(n) time, so O(n log n)

- only slightly faster than binary search approach
- BUT we look much smarter after covering our tracks

Outline for Today

> Counting inversions
> Voronoi diagrams

> Closest pair of points

Voronoi Diagrams

> Given a set of sites p_{1}, \ldots, p_{n}, separate the plane into the regions closest to each site
> Example on the right has 14 sites,
 so 14 regions as well
> (Coding details are complicated, so we'll stay high-level.)

Voronoi Diagrams

> Brute force solution:

- for each site, find its Voronoi region
> Finding the Voronoi region for a site:
- for every other site, find the separating line
> line that is equal distance from each site

> perpendicular bisector of line segment drawn between them
- somehow fit the closest ones together into the region boundary (complicated)
$>\Omega(\mathrm{n})$ per region, so $\Omega\left(\mathrm{n}^{2}\right)$ all together

Voronoi Diagrams Divide \& Conquer

> Divide the sites in half by drawing a line

- usually horizontal or vertical
- in principle, any line is fine

> Recursively find the Voronoi diagrams for each half
- use brute force when there are 1-3 sites (easy cases)

Picture from par.cse.nsysu.edu.tw/~cbyang/course/algo/algonote/algo4.ppt

Voronoi Diagrams Divide \& Conquer

> Only segments missing are where two sides meet

- already know which site is closest on each side
- only need to figure out which side is closer

> Find piecewise-linear, separating path on boundary
- equal distance between a site on each side

Voronoi Diagrams Divide \& Conquer

> Use a "two finger" algorithm
> Start with two highest sites near the boundary

- p_{6} and p_{9} in the picture
- draw bisector between them

> Extend the bisector until it hits edge of a Voronoi region
- one of those sites is no longer closest on that side

Voronoi Diagrams Divide \& Conquer

> "Two finger" algorithm

- finger on site from each side
- drawing bisector between them
> Extend bisector to edge of a Voronoi region
- one of those sites is no longer closest on that side
- move finger to new closest site
- start drawing the new bisector (must connect!)

Voronoi Diagrams Divide \& Conquer

> "Two finger" algorithm

- finger on site from each side
- drawing bisector between them
- move finger when bisector crosses edge of Voronoi region
$V D\left(S_{L}\right)$
$\mathrm{VD}\left(\mathrm{S}_{\mathrm{R}}\right)$
> Done when current bisector goes off to infinity
> Bisectors are equal distance between closest two pis

Voronoi Diagrams Divide \& Conquer

> Combine step takes time proportional to number of sites on the boundary
$>$ Worst case is $\mathrm{O}(\mathrm{n})$

- typically only a fraction of n sites are examined
> Master theorem says we get an $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm
- huge improvement over brute force

HW3: Voronoi diagrams

> HW3 asks you to compute a Voronoi diagram on paper

- divide by copying half the sites to two separate pieces of paper
- combine by copying answers back and then adding separating path
> See the assignment for more details on the algorithm
> Note: your answer does not have to be pixel perfect
- can just eye-ball the bisectors
- key is to understand the algorithm:
$>$ why is it correct? - only boundary is missing \& this finds it
$>$ why is it efficient? - $\mathrm{O}(\mathrm{n})$ to compute boundary

Outline for Today

> Counting inversions
> Voronoi diagrams
> Closest pair of points

Closest Pair of Points

> Problem: Given a set of points $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$ in the plane, find the pair of distinct points (p_{i}, p_{j}) with minimum distance $\left|p_{i}-p_{j}\right|$
> Brute force solution:

- compute the distance of every pair; keep track of the closest
- takes $\Theta\left(n^{2}\right)$ time since there are $n(n-1) / 2=\Theta\left(n^{2}\right)$ pairs

Closest Pair of Points
 > Apply divide \& conquer...
 1. Divide the points horizontally
 $>$ let L \& R be the two halves

2. Recursively finds the closest pair in L and R
$>$ let d be the smallest distance of the two
3. Combine: find closest pair p in L, q in R
> return closest of the three pairs

Closest Pair of Points
 > Apply divide \& conquer...
 1. Divide the points horizontally

2. Recursively find the closest pairs in L and R
$>$ let d be the smallest distance of the two
3. Combine: find closest pair p in L, q in R with $|p-q|<d$
$>$ only need to consider p in S_{L} and q in S_{R}
$>$ where $S_{L}=L$ within d of line, $S_{R}=R$ within d of line

Closest Pair of Points

> Apply divide \& conquer...
3. Combine: find closest pair p in L, q in R

$>$ only need to consider p in S_{L} and q in S_{R}
> Unfortunately, this is still too many to check by brute force... could be, say, $n / 6$ on each side, giving $\Theta((n / 6)(n / 6))=\Theta\left(n^{2}\right)$ time
> Will reduce the search by considering vertical distance also...

Closest Pair of Points

> Apply divide \& conquer...
3. Combine: find closest pair p in L, q in R

$>$ only need to consider p in S_{L} and q in S_{R}
$>$ Before we start, sort all the points by y-coordinate.
$>$ Now get S_{L} and S_{R} sorted by y-coordinate in $O(n)$ time (by filtering big list)
> For each p in S_{L}, just compare to those in S_{R} whose y-coordinate is within d of $p^{\prime} s$

Closest Pair of Points

> Apply divide \& conquer...
3. Combine: find closest pair p in L, q in R

$>$ only need to consider p in S_{L} and q in S_{R} whose y-coordinate is within d of p 's
> Three finger algorithm:

- one finger on p in S_{L}
- one finger first q in S_{R} with $q . y \geq p . y-d$
- one finger last q in S_{R} with $q . y \leq p . y+d$

$O(n)$ total finger moves compare p to all q's in this range

Closest Pair of Points

> Apply divide \& conquer...
3. Combine: find closest pair p in L, q in R

$>$ only need to consider p in S_{L} and q in S_{R} whose y-coordinate is within d of p 's
> Three finger algorithm:

- one finger on p in S_{L}
- one finger first q in S_{R} with $q . y \geq p . y-d$
- one finger last q in S_{R} with $q . y \leq p . y+d$

Closest Pair of Points

Want to check for points in this shaded region:

Will check all points in this dx 2d region:

Closest Pair of Points

> Q: How many points could be in the $\mathrm{d} \times 2 \mathrm{~d}$ box?
> A: no more than 6 (see picture)

- key point is that no points in R are closer than d apart!
- this limits the number that could be close to p to $O(1)$
> Example where a lot of elbow grease and problemspecific analysis is needed to find the best solution
- used general techniques to get most of the way there

Closest Pair of Points

> Apply divide \& conquer...

1. Divide the points into L \& R

2. Recursively finds the closest pair in L and R
$>$ let d be the smallest distance of the two
3. Combine: find closest pair p in L, q in R with $|\mathrm{p}-\mathrm{q}|<\mathrm{d}$
$>$ only need to consider p in S_{L} and
q in S_{R} whose y-coordinate is within d of $p^{\prime} s$
$>$ only $\mathrm{O}(1)$ such points for each p
$>$ return smallest of the 3 pairs above

Closest Pair of Points
 > Apply divide \& conquer...
 1. Divide the points into L \& R

2. Recursively finds the closest pair in L and R
3. Combine: find closest pair p in L, q in R with $|p-q|<d$ $>$ each p is compared to $O(1) q$'s, so $O(n)$ time
$>$ Divide + combine in $\mathrm{O}(\mathrm{n})$ time
$>$ Running time is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ by master theorem
