CSE 417
Divide & Conquer (pt 3)

More Examples

Divide & Conquer Review

> Apply the steps:
1. Divide the input data into 2+ parts
2. Recursively solve the problem on each part
3. Combine the sub-problem solutions into a problem solution

> Key questions:
1. Can you solve the problem by combining solutions from sub-problems?
2. Is that easier than solving it directly?

> Use master theorem to calculate the running time

Famous Algorithm Review

> Integer Multiplication: Karatsuba
— key point: only 3 recursive calls, so T(n) = 3 T(n/2) + O(n) ~> O(n'g3) = O(n'->8>)
— sub-problems are multiplications on numbers half as large

— Matrix Multiplication: Strassen
> 7 T(n/2) + O(n2) ~> O(n'e7) = O(n?2-8%8)

> FFT: Cooley & Tukey
— key point: divides data into odd and even indexes
— 2T(n/2)+ O(n) ~> O(n log n)
— Integer Multiplication: Schénhage & Strassen
> use FFTs to reduce to O(n) multiplication problem — O(n log n log log n)

Counting Inversions

> Problem: Given an array A of length n, count the number of
index pairs (i, j) such that i <j but A[i] > A[j]

> Example: if Ais sorted, then there are O inversions

> Example: if Ais in decreasing order, there are n(n-1)/2 inversions
— there are n(n-1)/2 pairs (i, j) satisfying 0 <i<j<n
— every pair is an inversion

Counting Inversions: Brute Force

> Brute-force solution:

int count = 0;
for (int 1 =0; 1 < n; 1++)
for (int J =1+ 1; J < n; Jj++)
if CA[1] > A[JD
count += 1;
return count;

> Runs in ©(n?) time

Counting Inversions: Application

> Measure the difference between two lists of rankings of n things
— music, candidates, web sites, etc.

> Replace each element in one list with the ranking (a number) of
that item in the second list

> Example: ranking Beetles band members
— Your List: John, Paul, George, Ringo
— My List: Paul, George, John, Ringo
— Resultis[3, 1, 2, 4]
> has 2 inversions (3,1) and (3,2)

Counting Inversions: Application

> Measure the difference between two lists of rankings of n things
— music, candidates, web sites, etc.

> Replace each element in one list with the ranking (a number) of
that item in the second list

> |If rankings are the same, result is sorted, so no inversions
— use number of inversions as a measure of how close they are

> See the textbook for more applications

Counting Inversions: Divide & Conquer

> Apply divide & conquer...

1. Divide A[0..n-1] into halves, A[0..n/2-1] and A[n/2..n-1]

W

> Same as merge sort
2. Recursively count inversions in each half

3. Combine...

Counting Inversions: Divide & Conquer

> Combine step...

> Consider any pair of indices (i, j)
Four possibilities
— iinfirst half, j in first half
— iinfirst half, j in second half
— iin second half, j in first half
— iin second half, j in second half

from recursive call on A[0..n/2-1]

need to count these...

doesn't satisfy i <]

from recursive call
on A[n/2..n-1]

Counting Inversions: Divide & Conquer

> Combine step...
— count pairs (i, j) with i in first half, j in second half, and A[i] > A[j]
— answer is that count plus answers from two recursive calls

> Brute force solution:

for (int 1 = 0; 1 < n/2; 1++)
for (int j = n/2; j < n; j++)
if CA[i] > A[JD

count++;

> Runs in ©((n/2)(n/2)) = ©(n2) time

Counting Inversions: Divide & Conquer

> Need a faster way to answer this question:

How many elements in A[n/2..n-1] are smaller than A[i]?

> What technique have we learned that can answer
this sort of question?

> Can apply binary search if A[n/2..n-1] is sorted
— solet's sort it
— one non-obvious trick: I'll do this recursively

Counting Inversions: Divide & Conquer

> Apply divide & conquer...

1. Divide A[0..n-1] into halves, A[0..n/2-1] and A[n/2..n-1]
2. Recursively sort & count inversions in each half

3. Combine:
> fori=0..n/2, binary search for A[i] in A[n/2..n-1]
— index gives number of j's with A[i] > A[j]
— add to count of inversions from recursive calls
> apply “two finger” merge to make A sorted

Counting Inversions: Divide & Conquer

> Apply divide & conquer...

> Divide + combine is O(n log n) because of n/2 binary searches
— C=log,2=1,socomparetont=n
— master theorem does not give a specific answer
> must be Q(n log n) since divide + combine is Q(n)
> must be O(n'*¢) for any € > 0 since divide + combine is O(n'*¢)
> could be O(n (log n)?) or something like that (can't tell from this analysis)

> We can improve it exactly as in earlier examples...
— binary searches are doing a lot of wasted work

Counting Inversions: Divide & Conquer

> Apply divide & conquer...

> Divide + combine is O(n log n) because of n/2 binary searches

> We can improve it exactly as in earlier examples...

— since A[0] £ A[1] £ ... (it's sorted now),
indexes returned by each binary search can only increase as we go

— rather than binary search, just use linear search
> total number of steps to the right is n/2 so total time is O(n)

> This is another "two finger” algorithm

Counting Inversions: Divide & Conquer

> Apply divide & conquer...

> Divide + combine is O(n log n) because of n/2 binary searches

> We can improve it exactly as in earlier examples...
— sequence of linear searches takes O(n) time

> This is another "two finger” algorithm
— in fact, the fingers make the same steps as in merging
— in fact, we could count and merge simultaneously (exercise!)

Counting Inversions: Divide & Conquer

> Apply divide & conquer...

1. Divide A[0..n-1] into halves, A[0..n/2-1] and A[n/2..n-1]

2. Recursively sort & count inversions in each half

3. Combine with “two finger” merge & count inversions
> Divide + combine in O(n) time, so O(n log n)

— only slightly faster than binary search approach
— BUT we look much smarter after covering our tracks

Voronoi Diagrams

> @Given a set of sites pq, ..., P
separate the plane into the
regions closest to each site

> Example on the right has 14 sites,
so 14 regions as well

> (Coding details are complicated, so we'll stay high-level.)

Voronoi Diagrams

> Brute force solution:
— for each site, find its Voronoi region

> Finding the Voronoi region for a site:

— for every other site, find the separating line
> line that is equal distance from each site
> perpendicular bisector of line segment drawn between them

— somehow fit the closest ones together into the region boundary (complicated)

> Q(n) per region, so Q(n?) all together

Voronoi Diagrams
Divide & Conquer

> Divide the sites in half
by drawing a line
— usually horizontal or vertical
— in principle, any line is fine

|
[
| VD(Sp)
[
|

> Recursively find the Voronoi diagrams for each half
— use brute force when there are 1-3 sites (easy cases)

Voronoi Diagrams
Divide & Conquer

> Only segments missing are
where two sides meet

— already know which site is)
closest on each side S Fm

— only need to figure out
which side is closer

> Find piecewise-linear, separating path on boundary
— equal distance between a site on each side

Voronoi Diagrams
Divide & Conquer

> Use a “two finger” algorithm

> Start with two highest sites
near the boundary
— pg and pg in the picture
— draw bisector between them

——
——
p—

\'D(SL)

> Extend the bisector until it hits edge of a Voronoi region
— one of those sites is no longer closest on that side

Voronoi Diagrams
Divide & Conquer

> “Two finger” algorithm
— finger on site from each side
— drawing bisector between them

——
——
p—

> Extend bisector to edge of
a Voronoi region

— one of those sites is no longer closest on that side
— move finger to new closest site
— start drawing the new bisector (must connect!)

Voronoi Diagrams
Divide & Conquer

> “Two finger” algorithm
— finger on site from each side

— drawing bisector between them

— move finger when bisector
crosses edge of Voronoi region

\'D(SL)

— —
——
p—

> Done when current bisector goes off to infinity

> Bisectors are equal distance between closest two p;'s

Voronoi Diagrams
Divide & Conquer

> Combine step takes time
proportional to number
of sites on the boundary

> Worst case is O(n)
— typically only a fraction of n sites are examined

> Master theorem says we get an O(n log n) algorithm
— huge improvement over brute force

HW3: Voronoi diagrams

> HW3 asks you to compute a Voronoi diagram on paper
— divide by copying half the sites to two separate pieces of paper
— combine by copying answers back and then adding separating path

> See the assignment for more details on the algorithm

> Note: your answer does not have to be pixel perfect
— can just eye-ball the bisectors

— key is to understand the algorithm:
> why is it correct? — only boundary is missing & this finds it
> why is it efficient? — O(n) to compute boundary

Closest Pair of Points

> Problem: Given a set of points py, ..., p, in the plane, find the pair
of distinct points (p;, Py with minimum distance |p, - pj|

> Brute force solution:
— compute the distance of every pair; keep track of the closest
— takes ©(n?) time since there are n(n-1)/2 = O(n?) pairs

Closest PairofPoints * * ~x

x X . X
> Apply divide & conquer... W X
X XX
X

1. Divide the points horizontally
> let L & R be the two halves

2. Recursively finds the closest pairin L and R
> let d be the smallest distance of the two

3. Combine: find closest pairpinL, qinR
> return closest of the three pairs

S, | 8
X ik Bix X
-4 e i ®
Closest Pair of Points * * x x X R
] B B m
« X X L v
> Apply divide & conquer... o X P Ix
X % X . X X
1. Divide the points horizontally . P P
d d

2. Recursively find the closest pairsin L and R
> let d be the smallest distance of the two

3. Combine: find closest pairpin L, gin Rwith |p-q| <d
> only need to consider pin S, and g in Sg
> where S, = L within d of line, Sz = R within d of line

) S

L X X

Closest Pair of Points o < | %]
o ;

X X % X

> Apply divide & conquer... X a .
R

3. Combine: find closest pairpinL, ginR
> only need to consider pin S, and g in Sg

> Unfortunately, this is still too many to check by brute force...
could be, say, n/6 on each side, giving ©((n/6)(n/6)) = ©(n?) time

> Will reduce the search by considering vertical distance also...

X Su | Se i X
Closest Pair of Points x| * .
XX X : X X XX X ’
> Apply divide & conquer... x X L x X
3. Combine: find closest pair pin L, g in R a1

> only need to consider pin S, and g in Sg

> Before we start, sort all the points by y-coordinate.
> Now get S, and S sorted by y-coordinate in O(n) time (by filtering big list)

> Foreach pin S, just compare to those in S
whose y-coordinate is within d of p’s

x 0| X X
L X X X X X R
o o i X |
Closest Pair of Points x] x
x X X L X X
¥ i i
N x x o T X x
> Apply divide & conquer... X | i XX
3. Combine: find closest pair pin L, g in R a1
> only need to consider p in S; and
g in Sg whose y-coordinate is within d of p's
> Three finger algorithm: O(n) total finger moves
— onefingeronpin5, compare p to all g's in this range

— onefinger first g in Sy with q.y > p.y-d
— onefinger last q in Sy with q.y < p.y +d

—

x4 | X X
L X X X X X R
o o i X |
Closest Pair of Points x] x
x X X L X X
¥ i i
N x x o T X x
> Apply divide & conquer... X | i XX
3. Combine: find closest pair pin L, g in R a1
> only need to consider p in S; and
g in Sg whose y-coordinate is within d of p's
> Three finger algorithm: compare p to all g's in this range
— onefingeronpin5, Q: how many are there?

— onefinger first g in Sy with q.y > p.y-d
— onefinger last q in Sy with q.y < p.y +d

—

Closest Pair of Points

Want to check for points Will check all points
in this shaded region: in this d x 2d region:

R R

Closest Pair of Points

> Q: How many points could be
in the d x 2d box?

> A: no more than 6 (see picture)
— key point is that no points in R are closer than d apart!
— this limits the number that could be close to p to O(1)

> Example where a lot of elbow grease and problem-
specific analysis is needed to find the best solution
— used general techniques to get most of the way there

X X X
Closest Pair of Points * ~ x|« <«
X X
X X X) X %
> Apply divide & conquer... c X TR Ix o
X XX
1. Divide the points into L & R a X1 X A

2. Recursively finds the closest pairin Land R
> let d be the smallest distance of the two

3. Combine: find closest pairpin L, qin Rwith |p-q| <d
> only need to consider p in S, and
g in Sg whose y-coordinate is within d of p's
> only O(1) such points for each p
> return smallest of the 3 pairs above

X X X
Closest Pair of Points * ~ x|« <«
X X
X X X) X %
> Apply divide & conquer... c X TR Ix o
X XX
1. Divide the points into L & R a X1 X A

2. Recursively finds the closest pairin Land R

3. Combine: find closest pairpin L, gin Rwith |p-q| <d

> each p is compared to O(1) g's, so O(n) time

> Divide + combine in O(n) time
> Running time is O(n log n) by master theorem

