CSE 417 Divide \& Conquer (pt 1)

Reminders

> HW2 is posted: due in one week

- start early!
- added hint on problem 1
$>$ (use domain knowledge to limit ternary search range)

Outline for Today

> Divide \& Conquer definition

> Some familiar problems
> Master Theorem

Divide \& Conquer

Algorithmic approach:

1. Divide the input data into $2+$ parts
2. Recursively solve the problem on each part

- i.e., solve the same problem on each part

3. Combine those solutions to solve the original problem

Sub-problems

> Divide \& conquer uses the solutions to sub-problems to solve the given problem

- used term "sub-problem" before as any other problem I solve as a step toward solving the larger problem
> e.g., to find the N-th special composite, we solve the sub-problem of finding the next largest such number given all the previous ones
- here, sub-problem is another instance of the same type of problem
> with N-th special composite, we changed the type of problem
> We will see the same idea with dynamic programming
- but has a more general use of sub-problems

Outline for Today

> Divide \& Conquer definition
> Some familiar problems

> Master Theorem

Merge Sort

1. Divide the array A into two halves: $A[0 . . n / 2-1]$ and $A[n / 2 . . n-1]$

- where n is the length of A

2. Recursively sort the two halves
3. Combine two sorted arrays into a single sorted array

- merging sorted arrays is easier than sorting
- use a "two finger" algorithm
> note that this needs attention to detail

Merge Sort: Divide

> Divide takes no work at all

- we don't even copy the arrays
> To do that, we need to generalize the inputs:
void mergeSort(int[] A, int start, int end)
> This issue will come up again with dynamic programming
- but there it will be less obvious
- keep this example in mind for later...

Merge Sort: Combine

> merge with a "two finger" algorithm

- one finger for the next largest element of each sub-array
- copy smaller to the output and move that finger forward
$>$ note that this needs attention to detail...

Merge Sort: Combine

Merge Sort: Combine

/** Make $B[i . . k-1]$ the sorted merge of $A[i . . j-1]$ and $A[j . . k-1]$. */ void merge(int[] A, int i, int j, int k, int []B) \{
int $a=i, b=j, c=i$;
// Inv: $\mathrm{B}[\mathrm{i} . . \mathrm{c}-1]$ is merge of $\mathrm{A}[i . . a-1]$ and $\mathrm{A}[j . . \mathrm{b}-1]$ while ($a<j \& \& b<k$) \{
if (A[a] < A[b]) B[c++] = A[a++];
else
$B[c++]=A[b++] ;$
\}
\}
What's still wrong?

Merge Sort: Combine

/** Make $B[i . . k-1]$ the sorted merge of $A[i . . j-1]$ and $A[j . . k-1]$. */ void merge(int[] A, int i, int j, int k, int []B) \{
int $a=i, b=j, c=i$;
// Inv: $\mathrm{B}[\mathrm{i} . . \mathrm{c}-1]$ is merge of $\mathrm{A}[i . . a-1]$ and $\mathrm{A}[j . . \mathrm{b}-1]$
while ($a<j \& \& b<k$) \{
if $(\mathrm{A}[\mathrm{a}]<\mathrm{A}[\mathrm{b}]) \mathrm{B}[\mathrm{c}++]=\mathrm{A}[a++]$;
else $\quad \mathrm{B}[\mathrm{c}++]=\mathrm{A}[\mathrm{b}++]$;
\}
while $(a<j) B[c++]=A[a++]$;
while (b < k) $B[c++]=A[b++]$;
\}

Merge Sort: Combine

> merge with a "two finger" algorithm

- one finger for the next largest element of each sub-array
- copy smaller to the output and move that finger forward
$>$ note that this needs attention to detail
- easily to forget array out of bounds cases \& left over elements
- you'll spot the error when it crashes, but that's no help for interviews...
$>$ Runs in $\mathrm{O}(\mathrm{n})$ time (where $\mathrm{n}=\mathrm{k}-\mathrm{i}$)
- every iteration copies one value to B
- only k - ivalues to copy

Merge Sort: running time

> Total time is $\mathrm{T}(\mathrm{n})$ where

$$
\begin{aligned}
& T(1)=O(1) \\
& T(n)=2 T(n / 2)+O(n) \quad \text { for } n>1
\end{aligned}
$$

> Takes O(1) time to sort 1 element

- just return
> Time to sort n elements is the time for
2 recursive calls on half the data $+\mathrm{O}(\mathrm{n})$ merge
- for now, ignore issues about rounding $n / 2$ to an integer

Merge Sort: running time

$$
\begin{aligned}
& T(1)=D \\
& T(n)=2 T(n / 2)+C n \quad \text { for } n>1
\end{aligned}
$$

> Can solve by repeated substitution...

$$
\begin{aligned}
T(n) & =2(2 T(n / 4)+C(n / 2))+C n \\
& =4 T(n / 4)+2 C(n / 2)+C n \\
& =4 T(n / 4)+C n+C n \\
& =4 T(n / 4)+2 C n
\end{aligned}
$$

Merge Sort: running time

$$
\begin{aligned}
& T(1)=D \\
& T(n)=2 T(n / 2)+C n \quad \text { for } n>1
\end{aligned}
$$

> Can solve by repeated substitution...

$$
\begin{aligned}
T(n) & =4 T(n / 4)+2 C n \\
& =4(2 T(n / 8)+C(n / 4))+2 C n \\
& =8 T(n / 8)+4 C(n / 4)+2 C n \\
& =8 T(n / 8)+3 C n
\end{aligned}
$$

Merge Sort: running time

$$
\begin{aligned}
& T(1)=D \\
& T(n)=2 T(n / 2)+C n \quad \text { for } n>1
\end{aligned}
$$

> Can solve by repeated substitution...

$$
\begin{aligned}
T(n) & =8 T(n / 8)+3 C n \\
& =\ldots \\
& =2^{k} T\left(n / 2^{k}\right)+k C n
\end{aligned}
$$

Merge Sort: running time

$$
\begin{aligned}
& T(1)=D \\
& T(n)=2 T(n / 2)+C n \quad \text { for } n>1
\end{aligned}
$$

> Can solve by repeated substitution...

$$
T(n)=2^{k} T\left(n / 2^{k}\right)+k C n
$$

> When $\mathrm{k}=\log _{2} \mathrm{n}$, we have $2^{\mathrm{k}}=2^{\lg \mathrm{n}}=\mathrm{n}$, so ...

$$
\begin{aligned}
T(n) & =n T(n / n)+(\lg n) C n \\
& =n T(1)+C n \lg n
\end{aligned}
$$

Merge Sort: running time

$$
\begin{aligned}
& T(1)=D \\
& T(n)=2 T(n / 2)+C n \quad \text { for } n>1
\end{aligned}
$$

$>$ When $k=\log _{2} n$, we have $2^{k}=2^{\lg n}=n$, so ...

$$
\begin{aligned}
T(n) & =n T(n / n)+(\lg n) C n \\
& =n T(1)+C n \lg n \\
& =D n+C n \lg n \\
& =O(n \log n)
\end{aligned}
$$

Merge Sort 2: sort a linked list

> Almost certainly the best algorithm for linked lists

- unlike array version, does not require any extra memory
> still needs extra space, but...
> gets by with the space in the pointers of the linked list nodes
- with arrays, quick sort was at one time considered fastest
> merge sort is probably more commonly used there also now
> changes in processor architecture had an impact
> Use the same divide \& conquer approach...
- split, recurse, merge

Merge Sort 2: Divide

> How do you split a linked list in two halves?

1. Find an element in the middle and disconnect the lists there
2. Put the even elements in one list and the odds in another
> Let's look at the second one...

Merge Sort 2: Divide

```
/** Put half of A's elements into B and half into C */
<T> void split(LinkedList<T> A, List<T> B, List<T> C) {
    while (A.size() > 0) {
            B.add(A.removeFirst());
            C.add(A.removeFirst());
        }
            } What's wrong?
}
```


Merge Sort 2: Divide

/* Put half of A's elements into B and half into C */
<T> void split(LinkedList<T> A, List<T> B, List<T> C) \{
while (A.size() > 0) \{
if (A.size() \% 2 == 0)
B.add(A.removeFirst());
else
C.add(A.removeFirst());
\}
\}

Merge Sort 2: Combine

> Merge two sorted linked lists into one with the same idea

- "two finger" algorithm
> one finger points to next node in each list
- smallest value not yet merged into the result
> merged list is initially empty
- add smallest node to the end

Merge Sort 2: running time

$>$ Now, the divide is not $\mathrm{O}(1)$, it is $\mathrm{O}(\mathrm{n})$
$>$ Combine is still an $\mathrm{O}(\mathrm{n})$ merge
> Total time is $\mathrm{T}(\mathrm{n})$ where

$$
\begin{aligned}
& T(1)=O(1) \\
& T(n)=2 T(n / 2)+O(n) \quad \text { for } n>1
\end{aligned}
$$

> Same formula, so same running time as before $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Finding the minimum

> Problem: Find the minimum value in $A[0 . . n-1]$

1. Divide the array into two halves: $A[0 . . n / 2-1]$ and $A[n / 2 . . n-1]$
2. Recursively find the minimums: m_{1} and m_{2}
3. Combine to find the overall minimum: $\min \left(m_{1}, m_{2}\right)$
> Is this the best way to solve the problem?

- not really...

Finding the minimum: running time

> Total time is $\mathrm{T}(\mathrm{n})$ where

$$
\begin{aligned}
& T(1)=O(1) \\
& T(n)=2 T(n / 2)+O(1) \quad \text { for } n>1
\end{aligned}
$$

Finding the minimum: running time

$$
\begin{aligned}
& T(1)=D \\
& T(n)=2 T(n / 2)+C \quad \text { for } n>1
\end{aligned}
$$

> Solve by repeated substitution...

$$
\begin{aligned}
T(n) & =2(2 T(n / 4)+C)+C \\
& =4 T(n / 4)+C(2+1) \\
& =4(2 T(n / 8)+C)+C(2+1) \\
& =8 T(n / 8)+C(4+2+1)
\end{aligned}
$$

Finding the minimum: running time

$$
\begin{aligned}
& T(1)=D \\
& T(n)=2 T(n / 2)+C \quad \text { for } n>1
\end{aligned}
$$

> Solve by repeated substitution...

$$
T(n)=2^{k} T\left(n / 2^{k}\right)+C\left(2^{k}+\ldots+2+1\right)
$$

> When $\mathrm{k}=\log _{2} \mathrm{n}, 2^{\mathrm{k}}=\mathrm{n}$, so ...

$$
T(n)=n T(n / n)+C\left(2^{k}+\ldots+2+1\right)
$$

Finding the minimum: running time

$$
\begin{aligned}
& T(1)=D \\
& T(n)=2 T(n / 2)+C \quad \text { for } n>1
\end{aligned}
$$

> When $\mathrm{k}=\log _{2} \mathrm{n}, 2^{\mathrm{k}}=\mathrm{n}$, so ...

$$
\begin{aligned}
T(n) & =n T(n / n)+C 2^{k}\left(1+\ldots+1 / 2^{k-1}+1 / 2^{k}\right) \\
& =n T(1)+C n\left(1+1 / 2+\ldots+1 / 2^{k}\right) \\
& =D n+C n\left(1+1 / 2+\ldots+1 / 2^{k}\right) \\
& =D n+C n O(1) \\
& =O(n)
\end{aligned}
$$

Outline for Today

> Divide \& Conquer definition
> Some familiar problems
> Master Theorem

Master Theorem

> Solves recurrence relations of the form that arise in Divide \& Conquer algorithms:
$T(1)=O(1)$
$T(n)<=a T(n / b)+f(n)$

- divide into a problems of size \mathbf{n} / \mathbf{b}
- divide + combine takes f(n) time

Master Theorem

Theorem: Let $\mathrm{T}(\mathrm{n})$ be bounded as on the previous slide. Define C := $\log _{\mathrm{b}}$ a. Then...
\# size 1 problems
time dominated
by all those O(1)'s

- If $f(n)=O\left(n^{C-\varepsilon}\right)$ for any $\varepsilon>0$, then $T(n)=\Theta\left(n^{C}\right)$
- If $f(n)=\Theta\left(n^{C}\right)$ then $T(n)=\Theta\left(n^{C} \log n\right) \quad$ time dominated by divide+combine of initial problem
- If $f(n)=\Omega\left(n^{C+\varepsilon}\right)$ for any $\varepsilon>0$ and ..., then $T(n)=\Theta(f(n))$
$>\ldots$ and f must satisfy a $\mathrm{f}(\mathrm{n} / \mathrm{b})<\mathrm{Cf}(\mathrm{n})$ for some $\mathrm{C}<1$
$>$... almost always true for polynomial time algorithms
> ... don't worry about it

Example: Binary Search

> divide into 1 sub-problem of size n / 2
> so $\mathrm{a}=1$ and $\mathrm{b}=2$ and $\mathrm{C}=\log _{2} 1=0$
$>$ divide take $\mathrm{O}(1)$ time: compare middle element to x
$>$ combine takes no time

- actually, takes $O(1)$ just for the return statement
> so $f(n)=\Theta(1)$

Example: Binary Search

$>\mathrm{C}=\log _{2} 1=0$
$>f(n)=\Theta(1)$
$>\operatorname{Compare} f(n)$ to $n^{C}=n^{0}=1 \ldots$
$>f(n)=\Theta\left(n^{C}\right)$ since both are $\Theta(1)$
$>$ Master theorem says time is $\Theta\left(n^{C} \log n\right)=\Theta(\log n)$

Example: Binary Search

$>\mathrm{f}(\mathrm{n})=\Theta\left(\mathrm{n}^{\mathrm{C}}\right)$ since both are $\Theta(1)$
> Master theorem says time is $\Theta\left(\mathrm{n}^{\mathrm{C}} \log \mathrm{n}\right)=\Theta(\log \mathrm{n})$
> If we had $f(n)=\Theta\left(n^{0.5}\right)$, then master theorem says time is $\Theta(f(\mathrm{n}))=\Theta\left(\mathrm{n}^{0.5}\right)$

- time is dominated by the divide + combine of the initial problem

Example: Merge Sort

$>$ divide into 2 sub-problem of size n / 2
$>$ so $\mathrm{a}=2$ and $\mathrm{b}=2$ and $\mathrm{C}=\log _{2} 2=1$
> divide take no time: sub-arrays are already in place
$>$ combine takes $O(n)$ time

- two-finger pass over the two sorted sub-arrays
$>$ so $f(n)=\Theta(n)$

Example: Merge Sort

$>C=\log _{2} 2=1$
$>f(n)=\Theta(n)$
$>\operatorname{Compare} \mathrm{f}(\mathrm{n})$ to $\mathrm{n}^{\mathrm{C}}=\mathrm{n}^{1}=\mathrm{n} . .$.
$>f(n)=\Theta\left(n^{C}\right)$ since both are $\Theta(n)$
$>$ Master theorem says time is $\Theta\left(n^{C} \log n\right)=\Theta(n \log n)$

Example: Merge Sort

$>\mathrm{f}(\mathrm{n})=\Theta\left(\mathrm{n}^{\mathrm{C}}\right)$ since both are $\Theta(\mathrm{n})$
> Master theorem says time is $\Theta\left(n^{c} \log n\right)=\Theta(n \log n)$
> If we had $\mathrm{f}(\mathrm{n})=\Theta\left(\mathrm{n}^{0.5}\right)$, then master theorem says time is $\Theta\left(\mathrm{n}^{\mathrm{C}}\right)=\Theta(\mathrm{n})$

- time is dominated by all the $O(1)$ works in size 1 problems

Example: Merge Sort

$>\mathrm{f}(\mathrm{n})=\Theta\left(\mathrm{n}^{\mathrm{C}}\right)$ since both are $\Theta(\mathrm{n})$
> Master theorem says time is $\Theta\left(n^{c} \log n\right)=\Theta(n \log n)$
$>$ If we had $f(n)=\Theta\left(n^{2}\right)$, then master theorem says time is $\Theta\left(n^{2}\right)$

- time is dominated by the divide + combine of initial problem

Example: Merge Sort

$>\mathrm{f}(\mathrm{n})=\Theta\left(\mathrm{n}^{\mathrm{C}}\right)$ since both are $\Theta(\mathrm{n})$
> Master theorem says time is $\Theta\left(n^{c} \log n\right)=\Theta(n \log n)$
> If we had $f(n)=\Theta(n \log n)$, then master theorem says...

Example: Merge Sort

$>\mathrm{f}(\mathrm{n})=\Theta\left(\mathrm{n}^{\mathrm{C}}\right)$ since both are $\Theta(\mathrm{n})$
$>$ Master theorem says time is $\Theta\left(n^{c} \log n\right)=\Theta(n \log n)$
> If we had $f(n)=\Theta(n \log n)$, then master theorem says... nothing!

- need $f(n)=\Omega\left(n^{C+\varepsilon}\right)$ for some $\varepsilon>0$
- even $f(n)=\Omega\left(n^{1.00000001}\right)$ would work but $\Theta(n \log n)$ does not

Understanding the Master Theorem

> Recursion tree

- node for each recursive call
$>$ Node records time for the divide + combine of that call
> Total time for any call is the sum of all nodes in the subtree
- cost of the recursive calls is recorded in those child nodes

Understanding the Master Theorem

Understanding the Master Theorem

$>$ Bottom level has $n / b^{k}=1$, so $\mathbf{k}=\log _{\mathbf{b}} \mathbf{n}$

- height of the tree is $\mathrm{k}+1$
> Number of leaves is a^{k}
- this is a $\log _{b} n=a^{\log _{a} n \log _{b} a}=\mathbf{n}^{\log _{b} a}=\mathbf{n}^{\mathbf{C}}$

Understanding the Master Theorem

$>$ Time for the top call (divide + combine) is $\mathrm{f}(\mathrm{n})$
> Time for all the calls in the leaves is $\mathrm{O}(1) \times \mathrm{n}^{\mathrm{C}}=\Theta\left(\mathrm{n}^{\mathrm{C}}\right)$
> Master theorem asks us to compare these times

- when $f(n) \gg \Theta\left(n^{C}\right)$, then the root divide + combine dominates everything
- when $f(n) \ll \Theta\left(n^{C}\right)$, then the leaf node work dominates everything
- when $f(n)=\Theta\left(n^{C}\right)$, then all the $\Theta(\log n)$ levels do the same work

Proof of Master Theorem (out of scope)

$>$ Total time is

$$
\Theta\left(n^{C}\right)+\sum_{i=0}^{\log _{b n}-1} a^{i} f(n / b i)
$$

- left term is leaves
- right term is all the divide + combines
- (need two terms since $T(n)$ is defined by two formulas)

Proof of Master Theorem (out of scope)

> Case 2: $\mathrm{f}(\mathrm{n})=\Theta\left(\mathrm{n}^{\mathrm{C}}\right)$
$>$ Let $\mathrm{f}(\mathrm{n})<=\mathrm{An} \mathrm{n}^{\mathrm{C}}$

- so A is the hidden constant in the big-O
$>$ Then $a^{i} f\left(n / b^{i}\right)<=a^{i} A\left(n / b^{i}\right)^{C}=A n^{C} a^{i} / b^{i c}=A n^{C}\left(a / b^{C}\right)^{i}$
- note that $b^{C}=b^{\log _{b} a}=a$
- so we have $a^{i} f\left(n / b^{i}\right)<=A n^{C}(a / a)^{i}=A n^{C}$
- work on each level is $<=A n^{C}$
- total work is $<=\Theta(\log n) A n^{C}=\Theta(f(n) \log n)$

Proof of Master Theorem (out of scope)

$>$ Case 1: $\mathrm{f}(\mathrm{n}) \ll \Theta\left(\mathrm{n}^{\mathrm{C}}\right)$

- need to show summation is $\mathrm{O}\left(\mathrm{n}^{\mathrm{C}}\right)$
- then the first term is just as big
$>$ Assume $\mathrm{f}(\mathrm{n})<=A \mathrm{n}^{\mathrm{C}-\varepsilon}$ for some $\varepsilon>0$
$>$ Then $a^{i} f\left(n / b^{i}\right)<=a^{i} A\left(n / b^{i}\right)^{C-\varepsilon}=\left(n / b^{i}\right)^{-\varepsilon} A n^{C}\left(a / b^{C}\right)^{i}=A n^{C-\varepsilon} b^{i \varepsilon}$
- only difference is factor of $\left(\mathrm{n} / \mathrm{b}^{\mathrm{i}}\right)^{-\varepsilon}$
- as before, $\mathrm{a} / \mathrm{b}^{\mathrm{c}}=\mathrm{a} / \mathrm{a}=1$
- need to sum this over i...

Proof of Master Theorem (out of scope)

$>$ Case 1: $\mathrm{f}(\mathrm{n}) \ll \Theta\left(\mathrm{n}^{\mathrm{C}}\right)$

- need to show summation is $\mathrm{O}\left(\mathrm{n}^{\mathrm{C}}\right)$
- then the first term is just as big
> Time for all levels:

$$
\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(n / b^{i}\right) \leq A n^{C-\varepsilon} \sum_{i=0}^{\log _{b} n-1}\left(b^{\varepsilon}\right)^{i}=A n^{C-\varepsilon} \cdot n^{\varepsilon}=A n C
$$

- geometric series with largest term $\left(b^{\varepsilon}\right)^{\log _{b} n}=\left(b^{\log _{b} n}\right)^{\varepsilon}=n^{\varepsilon}$

Proof of Master Theorem (out of scope)

$>$ Case 3: $f(n) \gg \Theta\left(n^{C}\right)$

- need to show summation is $\Theta(f(n))$, which dominates first term
$>$ Will use: a $f(n / b)=C f(n)$ for some $C<1$
$>$ Then $a^{i} f\left(n / b^{i}\right)<C^{i} f(n)$, so...

$$
\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(n / b^{i}\right) \leq f(n) \sum_{i=0}^{\log _{b} n-1} C^{i}=f(n) \cdot O(1)
$$

- geometric series with largest term $\mathrm{C}^{0}=1$

