
CSE 417
Divide & Conquer (pt 1)



> HW2 is posted: due in one week
– start early!
– added hint on problem 1

> (use domain knowledge to limit ternary search range)

Reminders



> Divide & Conquer definition
> Some familiar problems
> Master Theorem

Outline for Today



Algorithmic approach:

1. Divide the input data into 2+ parts

2. Recursively solve the problem on each part
– i.e., solve the same problem on each part

3. Combine those solutions to solve the original problem

Divide & Conquer



> Divide & conquer uses the solutions to sub-problems to solve 
the given problem
– used term “sub-problem” before as any other problem I solve as a step 

toward solving the larger problem
> e.g., to find the N-th special composite, we solve the sub-problem of finding the 

next largest such number given all the previous ones
– here, sub-problem is another instance of the same type of problem

> with N-th special composite, we changed the type of problem

> We will see the same idea with dynamic programming
– but has a more general use of sub-problems

Sub-problems



> Divide & Conquer definition
> Some familiar problems
> Master Theorem

Outline for Today



1. Divide the array A into two halves: A[0..n/2-1] and A[n/2..n-1]
– where n is the length of A

2. Recursively sort the two halves

3. Combine two sorted arrays into a single sorted array
– merging sorted arrays is easier than sorting 
– use a “two finger” algorithm

> note that this needs attention to detail

Merge Sort



> Divide takes no work at all
– we don’t even copy the arrays

> To do that, we need to generalize the inputs:

void mergeSort(int[] A, int start, int end)

> This issue will come up again with dynamic programming
– but there it will be less obvious
– keep this example in mind for later...

Merge Sort: Divide



> merge with a “two finger” algorithm
– one finger for the next largest element of each sub-array
– copy smaller to the output and move that finger forward

> note that this needs attention to detail...

Merge Sort: Combine



/** Make B[i..k-1] the sorted merge of A[i..j-1] and A[j..k-1]. */
void merge(int[] A, int i, int j, int k, int[] B) {
int a = i, b = j, c = i;

// Inv: B[i..c-1] is merge of A[i..a-1] and A[j..b-1]
while (c < k) {
if (A[a] < A[b]) B[c++] = A[a++];
else             B[c++] = A[b++];

}
}

Merge Sort: Combine

What’s wrong?



/** Make B[i..k-1] the sorted merge of A[i..j-1] and A[j..k-1]. */
void merge(int[] A, int i, int j, int k, int[] B) {
int a = i, b = j, c = i;

// Inv: B[i..c-1] is merge of A[i..a-1] and A[j..b-1]
while (a < j && b < k) {
if (A[a] < A[b]) B[c++] = A[a++];
else             B[c++] = A[b++];

}
}

Merge Sort: Combine

What’s still wrong?



/** Make B[i..k-1] the sorted merge of A[i..j-1] and A[j..k-1]. */
void merge(int[] A, int i, int j, int k, int[] B) {
int a = i, b = j, c = i;

// Inv: B[i..c-1] is merge of A[i..a-1] and A[j..b-1]
while (a < j && b < k) {
if (A[a] < A[b]) B[c++] = A[a++];
else             B[c++] = A[b++];

}

while (a < j) B[c++] = A[a++];
while (b < k) B[c++] = A[b++];

}

Merge Sort: Combine



> merge with a “two finger” algorithm
– one finger for the next largest element of each sub-array
– copy smaller to the output and move that finger forward

> note that this needs attention to detail
– easily to forget array out of bounds cases & left over elements
– you’ll spot the error when it crashes, but that’s no help for interviews...

> Runs in O(n) time (where n = k – i)
– every iteration copies one value to B
– only k – i values to copy

Merge Sort: Combine



> Total time is T(n) where

T(1) = O(1)
T(n) = 2 T(n / 2) + O(n) for n > 1

> Takes O(1) time to sort 1 element
– just return

> Time to sort n elements is the time for
2 recursive calls on half the data + O(n) merge
– for now, ignore issues about rounding n / 2 to an integer

Merge Sort: running time



T(1) = D
T(n) = 2 T(n / 2) + C n for n > 1

> Can solve by repeated substitution...

T(n) = 2 (2 T(n / 4) + C (n/2)) + C n
= 4 T(n / 4) + 2 C (n/2) + C n
= 4 T(n / 4) + C n + C n
= 4 T(n / 4) + 2C n

Merge Sort: running time



T(1) = D
T(n) = 2 T(n / 2) + C n for n > 1

> Can solve by repeated substitution...

T(n) = 4 T(n / 4) + 2C n
= 4 (2 T(n / 8) + C (n / 4)) + 2C n
= 8 T(n / 8) + 4 C (n / 4) + 2C n
= 8 T(n / 8) + 3C n

Merge Sort: running time



T(1) = D
T(n) = 2 T(n / 2) + C n for n > 1

> Can solve by repeated substitution...

T(n) = 8 T(n / 8) + 3C n
= ...
= 2k T(n / 2k) + kC n

Merge Sort: running time



T(1) = D
T(n) = 2 T(n / 2) + C n for n > 1

> Can solve by repeated substitution...

T(n) = 2k T(n / 2k) + kC n

> When k = log2 n, we have 2k = 2lg n = n, so ...

T(n) = n T(n / n) + (lg n) C n
= n T(1) + C n lg n

Merge Sort: running time



T(1) = D
T(n) = 2 T(n / 2) + C n for n > 1

> When k = log2 n, we have 2k = 2lg n = n, so ...

T(n) = n T(n / n) + (lg n) C n
= n T(1) + C n lg n
= D n + C n lg n
= O(n log n)

Merge Sort: running time



> Almost certainly the best algorithm for linked lists
– unlike array version, does not require any extra memory

> still needs extra space, but...
> gets by with the space in the pointers of the linked list nodes

– with arrays, quick sort was at one time considered fastest
> merge sort is probably more commonly used there also now
> changes in processor architecture had an impact

> Use the same divide & conquer approach...
– split, recurse, merge

Merge Sort 2: sort a linked list



> How do you split a linked list in two halves?

1. Find an element in the middle and disconnect the lists there
2. Put the even elements in one list and the odds in another

> Let’s look at the second one...

Merge Sort 2: Divide



/** Put half of A’s elements into B and half into C */
<T> void split(LinkedList<T> A, List<T> B, List<T> C) {

while (A.size() > 0) {
B.add(A.removeFirst());
C.add(A.removeFirst());

}
}

Merge Sort 2: Divide

What’s wrong?



/* Put half of A’s elements into B and half into C */
<T> void split(LinkedList<T> A, List<T> B, List<T> C) {

while (A.size() > 0) {
if (A.size() % 2 == 0)

B.add(A.removeFirst());
else

C.add(A.removeFirst());
}

}

Merge Sort 2: Divide



> Merge two sorted linked lists into one with the same idea
– “two finger” algorithm

> one finger points to next node in each list
– smallest value not yet merged into the result

> merged list is initially empty
– add smallest node to the end

Merge Sort 2: Combine



> Now, the divide is not O(1), it is O(n)
> Combine is still an O(n) merge

> Total time is T(n) where

T(1) = O(1)
T(n) = 2 T(n / 2) + O(n) for n > 1

> Same formula, so same running time as before
O(n log n)

Merge Sort 2: running time



> Problem: Find the minimum value in A[0..n-1]

1. Divide the array into two halves: A[0..n/2-1] and A[n/2..n-1]

2. Recursively find the minimums: m1 and m2

3. Combine to find the overall minimum: min(m1, m2)

> Is this the best way to solve the problem?
– not really... 

Finding the minimum



> Total time is T(n) where

T(1) = O(1)
T(n) = 2 T(n / 2) + O(1) for n > 1

Finding the minimum: running time



T(1) = D
T(n) = 2 T(n / 2) + C for n > 1

> Solve by repeated substitution...

T(n) = 2 (2 T(n / 4) + C) + C
= 4 T(n / 4) + C (2 + 1)
= 4 (2 T(n / 8) + C) + C (2 + 1)
= 8 T(n / 8) + C (4 + 2 + 1)

Finding the minimum: running time



T(1) = D
T(n) = 2 T(n / 2) + C for n > 1

> Solve by repeated substitution...

T(n) = 2k T(n / 2k) + C (2k + ... + 2 + 1)

> When k = log2 n, 2k = n, so ...

T(n) = n T(n / n) + C (2k + ... + 2 + 1)

Finding the minimum: running time



T(1) = D
T(n) = 2 T(n / 2) + C for n > 1

> When k = log2 n, 2k = n, so ...

T(n) = n T(n / n) + C 2k (1 + ... + 1/2k-1 + 1/2k)
= n T(1) + C n (1 + 1/2 + ... + 1/2k)
= D n + C n (1 + 1/2 + ... + 1/2k)
= D n + C n O(1)
= O(n)

Finding the minimum: running time



> Divide & Conquer definition
> Some familiar problems
> Master Theorem

Outline for Today



> Solves recurrence relations of the form that arise in
Divide & Conquer algorithms:

T(1) = O(1)
T(n) <= a T(n/b) + f(n)
– divide into a problems of size n / b
– divide + combine takes f(n) time

Master Theorem



Theorem: Let T(n) be bounded as on the previous slide.
Define C := logb a. Then...

• If f(n) = O(nC – ε) for any ε > 0, then T(n) = Θ(nC)

• If f(n) = Θ(nC), then T(n) = Θ(nC log n)

• If f(n) = Ω(nC + ε) for any ε > 0 and ..., then T(n) = Θ(f(n))
> ... and f must satisfy a f(n / b) < C f(n) for some C < 1
> ... almost always true for polynomial time algorithms
> ... don’t worry about it

Master Theorem

# size 1 problems

time dominated
by all those O(1)’s

time dominated
by divide+combine
of initial problem



> divide into 1 sub-problem of size n / 2
> so a = 1 and b = 2 and C = log2 1 = 0

> divide take O(1) time: compare middle element to x
> combine takes no time

– actually, takes O(1) just for the return statement

> so f(n) = Θ(1)

Example: Binary Search



> C = log2 1 = 0
> f(n) = Θ(1)

> Compare f(n) to nC = n0 = 1...

> f(n) = Θ(nC) since both are Θ(1)
> Master theorem says time is Θ(nC log n) = Θ(log n)

Example: Binary Search



> f(n) = Θ(nC) since both are Θ(1)
> Master theorem says time is Θ(nC log n) = Θ(log n)

> If we had f(n) = Θ(n0.5),
then master theorem says time is Θ(f(n)) = Θ(n0.5)
– time is dominated by the divide + combine of the initial problem

Example: Binary Search



> divide into 2 sub-problem of size n / 2
> so a = 2 and b = 2 and C = log2 2 = 1

> divide take no time: sub-arrays are already in place
> combine takes O(n) time

– two-finger pass over the two sorted sub-arrays

> so f(n) = Θ(n)

Example: Merge Sort



> C = log2 2 = 1
> f(n) = Θ(n)

> Compare f(n) to nC = n1 = n...

> f(n) = Θ(nC) since both are Θ(n)
> Master theorem says time is Θ(nC log n) = Θ(n log n)

Example: Merge Sort



> f(n) = Θ(nC) since both are Θ(n)
> Master theorem says time is Θ(nC log n) = Θ(n log n)

> If we had f(n) = Θ(n0.5),
then master theorem says time is Θ(nC) = Θ(n)
– time is dominated by all the O(1) works in size 1 problems

Example: Merge Sort



> f(n) = Θ(nC) since both are Θ(n)
> Master theorem says time is Θ(nC log n) = Θ(n log n)

> If we had f(n) = Θ(n2),
then master theorem says time is Θ(n2)
– time is dominated by the divide + combine of initial problem

Example: Merge Sort



> f(n) = Θ(nC) since both are Θ(n)
> Master theorem says time is Θ(nC log n) = Θ(n log n)

> If we had f(n) = Θ(n log n),
then master theorem says...

Example: Merge Sort



> f(n) = Θ(nC) since both are Θ(n)
> Master theorem says time is Θ(nC log n) = Θ(n log n)

> If we had f(n) = Θ(n log n),
then master theorem says... nothing!
– need f(n) = Ω(nC + ε) for some ε > 0
– even f(n) = Ω(n1.00000001) would work but Θ(n log n) does not

Example: Merge Sort



> Recursion tree
– node for each recursive call

> Node records time for the divide + combine of that call
> Total time for any call is the sum of all nodes in the subtree

– cost of the recursive calls is recorded in those child nodes

Understanding the Master Theorem



Understanding the Master Theorem

f(n)

f(n/b) f(n/b) f(n/b)... (a recursive calls)

f(n/b2) f(n/b2) ... f(n/b2) f(n/b2)f(n/b2) ... (a2 recursive calls)

f(n/bk) ... f(n/bk) f(n/bk)f(n/bk) ...

.

.

.

.

.

.

.

.

.

.

.

.



> Bottom level has n / bk = 1, so k = logb n
– height of the tree is k + 1

> Number of leaves is ak

– this is  a logb n = a loga n logb a = n logb a = nC

Understanding the Master Theorem



> Time for the top call (divide + combine) is f(n)
> Time for all the calls in the leaves is O(1) x nC = Θ(nC)

> Master theorem asks us to compare these times
– when f(n) >> Θ(nC), then the root divide + combine dominates everything
– when f(n) << Θ(nC), then the leaf node work dominates everything
– when f(n) = Θ(nC), then all the Θ(log n) levels do the same work

Understanding the Master Theorem



> Total time is

Θ 𝑛𝐶 + % 𝑎𝑖	𝑓(𝑛/𝑏𝑖
-./

	01
	2	3

456

)

– left term is leaves
– right term is all the divide + combines
– (need two terms since T(n) is defined by two formulas)

Proof of Master Theorem (out of scope)



> Case 2: f(n) = Θ(nC)

> Let f(n) <= A nC

– so A is the hidden constant in the big-O

> Then ai f(n / bi) <= ai A (n / bi)C = A nC ai / biC = A nC (a / bC)i

– note that bC = blogb a = a
– so we have ai f(n / bi) <= A nC (a / a)i = A nC

– work on each level is <= A nC

– total work is <= Θ(log n) A nC = Θ(f(n) log n)

Proof of Master Theorem (out of scope)



> Case 1: f(n) << Θ(nC)
– need to show summation is O(nC)
– then the first term is just as big

> Assume f(n) <= A nC – ε for some ε > 0
> Then ai f(n / bi) <= ai A (n / bi)C – ε = (n / bi) -ε A nC (a / bC)i = A nC – ε b iε

– only difference is factor of (n / bi) –ε

– as before, a / bC = a / a = 1
– need to sum this over i...

Proof of Master Theorem (out of scope)



> Case 1: f(n) << Θ(nC)
– need to show summation is O(nC)
– then the first term is just as big

> Time for all levels:

% 𝑎𝑖	𝑓(𝑛/𝑏𝑖
-./

	0
1	2	3

456

) ≤ 𝐴𝑛:2; % 𝑏𝜀 𝑖

-./
	0
123

456

= 𝐴𝑛:2; > 𝑛𝜀 = 𝐴𝑛𝐶

– geometric series with largest term (𝑏𝜀)log01= 𝑏log01 𝜀 = nε

Proof of Master Theorem (out of scope)



> Case 3: f(n) >> Θ(nC)
– need to show summation is Θ(f(n)), which dominates first term

> Will use: a f(n / b) = C f(n) for some C < 1
> Then ai f(n / bi) < Ci f(n), so...

% 𝑎𝑖	𝑓(𝑛/𝑏𝑖
-./

	0
1	2	3

456

) ≤ 𝑓(𝑛) % 𝐶𝑖
-./

	0
123

456

= 𝑓(𝑛) > 𝑂(1)

– geometric series with largest term C0 = 1

Proof of Master Theorem (out of scope)


