CSE 417

Divide & Conquer (pt 1)

Divide & Conquer

Algorithmic approach:

1. Divide the input data into 2+ parts

2. Recursively solve the problem on each part
— i.e., solve the same problem on each part

3. Combine those solutions to solve the original problem

Sub-problems

> Divide & conquer uses the solutions to sub-problems to solve
the given problem

— used term “sub-problem” before as any other problem | solve as a step
toward solving the larger problem

> e.g., to find the N-th special composite, we solve the sub-problem of finding the
next largest such number given all the previous ones

— here, sub-problem is another instance of the same type of problem
> with N-th special composite, we changed the type of problem

> We will see the same idea with dynamic programming
— but has a more general use of sub-problems

Merge Sort

1. Divide the array A into two halves: A[0..n/2-1] and A[n/2..n-1]
— where n is the length of A

2. Recursively sort the two halves

3. Combine two sorted arrays into a single sorted array
— merging sorted arrays is easier than sorting

— use a “two finger” algorithm
> note that this needs attention to detail

Merge Sort: Divide

> Divide takes no work at all
— we don't even copy the arrays

> To do that, we need to generalize the inputs:

vold mergeSort(int[] A, int start, int end)

> This issue will come up again with dynamic programming
— but there it will be less obvious
— keep this example in mind for later...

Merge Sort: Combine

> merge with a “two finger” algorithm
— one finger for the next largest element of each sub-array
— copy smaller to the output and move that finger forward

> note that this needs attention to detail...

Merge Sort: Combine

/** Make B[1..k-1] the sorted merge of A[1..j-1] and A[j..k-1]. */
void merge(int[] A, int 1, int j, int k, int[] B) {
inta=1, b=7J, c=1;

// Inv: B[1..c-1] 1s merge of A[i..a-1] and A[j..b-1]
while (c < k) { -
'L'F (A[a:l < A[b]) BI:C++:| = A[q++:|; ’
else B[c++] = A[b++]; — What's wrong?

¥
¥

Merge Sort: Combine

/** Make B[1..k-1] the sorted merge of A[1..j-1] and A[j..k-1]. */
void merge(int[] A, int 1, int j, int k, int[] B) {
inta=1, b=7J, c=1;

// Inv: B[1..c-1] 1s merge of A[i..a-1] and A[j..b-1]
while (a < J & b < k) {
1f (A[a] < A[b]) B[c++] = A[la++];
else Blc++] = A[b++];
by
Iy

What's still wrong?

Merge Sort: Combine

/** Make B[1..k-1] the sorted merge of A[1..j-1] and A[j..k-1]. */
void merge(int[] A, int 1, int j, int k, int[] B) {

inta=1, b=7J, c=1;

// Inv: B[1..c-1] 1s merge of A[i..a-1] and A[j..b-1]

while Ca < j 8& b < k) {
if (A[a] < A[b]) B[c++] = A[a++];

else BLc++] = A[b++];
}
while (a < j) B[c++] = A[a++];
while (b < k) B[c++] = A[b++];

h

Merge Sort: Combine

> merge with a “two finger” algorithm
— one finger for the next largest element of each sub-array
— copy smaller to the output and move that finger forward

> note that this needs attention to detail

— easily to forget array out of bounds cases & left over elements
— you'll spot the error when it crashes, but that’s no help for interviews...

> Runsin O(n) time (where n =k -)
— every iteration copies one value to B
— only k -ivalues to copy

Merge Sort: running time

> Total time is T(n) where

T(1) = O(1)
T(nN)=2T(n/2)+ 0O(n) forn>1

> Takes O(1) time to sort 1 element
— justreturn

> Time to sort n elements is the time for
2 recursive calls on half the data + O(n) merge
— for now, ignore issues about rounding n / 2 to an integer

Merge Sort: running time

T(1)=D
TnN)=2T(n/2)+Cn forn>1

> (Can solve by repeated substitution...

T(nN)=22T(n/4)+C(n/2))+Cn
=4T(n/4)+2C(n/2)+Cn
=4T(n/4)+Cn+Cn
=4T(n/4)+2Cn

Merge Sort: running time

T(1)=D
TnN)=2T(n/2)+Cn forn>1

> (Can solve by repeated substitution...

T(nN)=4T(n/4)+2Cn
=4(2T(n/8)+C(n/4))+2Cn
=8T(n/8)+4C(n/4)+2Cn
=8T(n/8)+3Cn

Merge Sort: running time

T(1)=D
TnN)=2T(n/2)+Cn forn>1

> (Can solve by repeated substitution...

T(n)=8T(n/8)+3Cn

=2kT(n/ 2%+ kCn

Merge Sort: running time

T(1)=D
TnN)=2T(n/2)+Cn forn>1
> (Can solve by repeated substitution...

T(n) =2kT(n /2K + kCn

> When k =log, n, we have 2k=2g"=n, so ...

TN)=nT(n/n)+(gn)Cn
=nT(1)+Cnlgn

Merge Sort: running time

T(1)=D
TnN)=2T(n/2)+Cn forn>1

> When k =log, n, we have 2k=2g"=n, so ...

TN)=nT(n/n)+(gn)Cn
=nT(1)+Cnlgn
=Dn+Cnlgn
= O(n log n)

Merge Sort 2: sort a linked list

> Almost certainly the best algorithm for linked lists

— unlike array version, does not require any extra memory
> still needs extra space, but...
> gets by with the space in the pointers of the linked list nodes
— with arrays, quick sort was at one time considered fastest
> merge sort is probably more commonly used there also now
> changes in processor architecture had an impact

> Use the same divide & conquer approach...
— split, recurse, merge

Merge Sort 2: Divide

> How do you split a linked list in two halves?

1. Find an element in the middle and disconnect the lists there
2. Putthe even elements in one list and the odds in another

> Let's look at the second one...

Merge Sort 2: Divide

/** Put half of A’s elements into B and half into C */

<T> void split(LinkedList<T> A, List<T> B, List<T> C) {

while (A.size() > @) { -
B.add(A.removeFirst());
C.add(A.removeFirst());

h _
¥

— What's wrong?

Merge Sort 2: Divide

/* Put half of A’s elements into B and half into C */
<T> void split(LinkedList<T> A, List<T> B, List<T> C) {
while (A.size() > 0) {
1f (A.s1ze() % 2 == 0)
B.add(A.removeFirst());
else
C.add(A.removeFirst());

Merge Sort 2: Combine

> Merge two sorted linked lists into one with the same idea
— "two finger” algorithm

> one finger points to next node in each list
— smallest value not yet merged into the result

> merged list is initially empty
— add smallest node to the end

Merge Sort 2: running time

> Now, the divide is not O(1), it is O(n)
> Combine is still an O(n) merge

> Total time is T(n) where

T(1) = O(1)
T(nN)=2T(n/2)+ 0O(n) forn>1

> Same formula, so same running time as before
O(n log n)

Finding the minimum

> Problem: Find the minimum value in A[0..n-1]

1. Divide the array into two halves: A[0..n/2-1] and A[n/2..n-1]
2. Recursively find the minimums: m; and m,

3. Combine to find the overall minimum: min(m,, m,)

> |s this the best way to solve the problem?
— not really...

Finding the minimum: running time

> Total time is T(n) where

T(1) = O(1)
T(nN)=2T(n/2)+ O(1) forn>1

W

Finding the minimum: running time

T(1)=D
T(nN)=2T(n/2)+C forn>1

> Solve by repeated substitution...

TN)=2R2T(n/4)+C)+C
=4T(n/4)+C(2+1)

=4(2T(n/8)+C)+C((2+1)
=8T(n/8)+C(4+2+1) w

Finding the minimum: running time

T(1)=D
T(nN)=2T(n/2)+C forn>1

> Solve by repeated substitution...

T(N)=2kT(n /2K +C(2k+...+2+1)

> When k =log, n, 2k=n, so ...

TN)=nT(n/N)+CRKk+..+2+1) w

Finding the minimum: running time

T(1)=D
T(nN)=2T(n/2)+C forn>1
> When k =log, n, 2k=n, so ...

TN)=nT(n/n)+ C2K(1 + ...+ 1/2KT + 1/2K)
=nT(M+Cn(1+1/2+...+1/2%

=Dn+Cn(1+1/2+...+1/2%
=Dn+CnO(1)
= 0(n)

Master Theorem

> Solves recurrence relations of the form that arise in
Divide & Conquer algorithms:

T(1) = O(1)

T(n) <= a T(n/b) + f(n)
— divide into a problems of sizen /b
— divide + combine takes f(n) time

Master Theorem

Theorem: Let T(n) be bounded as on the previous slide. . #size 1problems

Define C :=log, a. Then... time dominated
by all those O(1)'s

« Iff(n)=0O(n-¢) for any € > 0, then T(n) = ©(n°)
+ If f(n) = O(n%), then T(n) = O(n< log n) by i tine
of initial problem
« Iff(n)=Q(n*¢) forany € >0 and ..., then T(n) = ©(f(n))
> ... and f must satisfy a f(n / b) < C f(n) for some C <1

> ... almost always true for polynomial time algorithms
> ...dont worry about it

Example: Binary Search

> divide into 1 sub-problem of sizen /2
> soa=Tandb=2andC=log,1=0

> divide take O(1) time: compare middle element to x

> combine takes no time
— actually, takes O(1) just for the return statement

> so f(n) = O©(1)

Example: Binary Search

>

C=log,1=0
f(n) = ©(1)

Compare f(n)tont=n=1...

f(n) = ©(N°) since both are ©(1)
Master theorem says time is @(n¢ log n) = ©(log n)

W

Example: Binary Search

> f(n) = ©(n%) since both are (1)
> Master theorem says time is @(n¢ log n) = ©(log n)

> |f we had f(n) = ©(n°%>),
then master theorem says time is O(f(n)) = ©(n°>)
— time is dominated by the divide + combine of the initial problem

W

Example: Merge Sort

> divide into 2 sub-problem of sizen /2
> soa=2andb=2andC=log,2 =1

> divide take no time: sub-arrays are already in place

> combine takes O(n) time
— two-finger pass over the two sorted sub-arrays

> so f(n) = ©(n)

W

Example: Merge Sort

>

C=log,2=1
f(n) = ©(n)

Compare f(n)tont=n'=n...

f(n) = ©(Nn°) since both are ©(n)
Master theorem says time is ©(n¢ log n) = ©(n log n)

W

Example: Merge Sort

> f(n) = ©(n%) since both are O(n)
> Master theorem says time is O(n¢ log n) = ©(n log n)

> |f we had f(n) = ©(n°%>),
then master theorem says time is ©(n¢) = ©(n)
— time is dominated by all the O(1) works in size 1 problems

W

Example: Merge Sort

> f(n) = ©(n%) since both are O(n)
> Master theorem says time is O(n¢ log n) = ©(n log n)

> |f we had f(n) = ©(n?),
then master theorem says time is ©(n?)
— time is dominated by the divide + combine of initial problem

W

Example: Merge Sort

> f(n) = ©(n%) since both are O(n)
> Master theorem says time is O(n¢ log n) = ©(n log n)

> If we had f(n) = ©(n log n),
then master theorem says...

W

Example: Merge Sort

> f(n) = ©(n%) since both are O(n)
> Master theorem says time is O(n¢ log n) = ©(n log n)

> If we had f(n) = ©(n log n),
then master theorem says... nothing!
— need f(n) = Q(n¢*¢) for some >0
— even f(n) = Q(n1.00000001) would work but @(n log n) does not

Understanding the Master Theorem

> Recursion tree
— node for each recursive call

> Node records time for the divide + combine of that call

> Total time for any call is the sum of all nodes in the subtree
— cost of the recursive calls is recorded in those child nodes

Understanding the Master Theorem
f(n)
f(n/b) f(n/b) f(n/b) (a recursive calls)

fin/b?) fin/b?) .. f(n/b?) f/b?) .. f(n/b?) (a2 recursive calls)

f(n/b%) ... f(n/bk) f(n/bk) ... f(n/bk)

Understanding the Master Theorem

> Bottom level has n/bk=1, so k=1log, n
— height of the tree is k + 1

> Number of leaves is ak
— thisis g'ogn = g log.nlog,a = nlog,a=RnC

W

Understanding the Master Theorem

> Time for the top call (divide + combine) is f(n)
> Time for all the calls in the leaves is O(1) x n¢ = ©(n%)

> Master theorem asks us to compare these times
— when f(n) >> O(n%), then the root divide + combine dominates everything
— when f(n) << O(n%), then the leaf node work dominates everything
— when f(n) = ©(n%), then all the ©(log n) levels do the same work

Proof of Master Theorem (out of scope)

> Total time is

log, —1

o (nc) + 2 at f(n/bi)

o~
Il
o

— left term is leaves
— right term is all the divide + combines
— (need two terms since T(n) is defined by two formulas)

Proof of Master Theorem (out of scope)

> Case 2: f(n) = O(n%)

> Let f(n) <= An¢
— so Ais the hidden constant in the big-O

> Thena'f(n/b)<=a ' A(n/b)=Anca /bc=Anc(a/bc)
— note that b¢ =Dblogra =3
— sowehavea f(n/b)<=An¢(a/a)=Anc
— work on each level is <= An€
— total work is <= ©(log n) A n¢ = ©(f(n) log n)

Proof of Master Theorem (out of scope)

> Case 1: f(n) << ©(n%)
— need to show summation is O(n%)
— then the first term is just as big

> Assume f(n) <= A n¢-¢forsomee>0
> Thena'f(n/b)<=a A(n/b)-¢=(n/b)€Anc(a/b)=Ant-€pie
— only difference is factor of (n / b)-¢

— as before,a/b¢=a/a=1
— need to sum this overi...

Proof of Master Theorem (out of scope)

> Case 1: f(n) << ©(n%)
— need to show summation is O(n%)
— then the first term is just as big

> Time for all levels:

log,n—-1 log,n—-1
z al f(n/b") < Ant~¢ z (be)! = Ant~¢ - ne¢ = AnC
i=0 =0

— geometric series with largest term (b)!08:n= (blogb”) £ = pe

Proof of Master Theorem (out of scope)

> Case 3: f(n) >> ©(n%)

— need to show summation is ©(f(n)), which dominates first term

> Will use: af(n/b)=Cf(n) forsomeC<1
> Then a'f(n/b') < C'f(n), so...

log,n -1 log,n—-1
D dfm/<fm) Y Ci=fm)-0()
i=0 =0

— geometric series with largest term C% =1

W

