
CSE 417
Binary Search (pt 3)



> HW1 is due today
– added a clarification on 1d

> HW2 will be posted shortly
– coding HW: fitting an ML model using ternary search
– start early! (might require some trial & error)

Reminders



> Binary search over the reals
> Ternary search over the reals
> Applications to ML

Outline for Today



> Above we considered f : Z ➝ R. What about f : R ➝ R?

> Standard problem in numerical analysis...
> But instead of inverting f, they want to find the zeros of f

– these are equivalent problems:
> to find t s.t. f(t) = x, just define g(t) = f(t) – x
> g(t) = 0 means f(t) = x

Binary search over the reals



> New problem: when do we stop?
– before, if f(t) < x, we can try f(t+1), f(t+2), ...
– now, we might need to try f(t+0.00000000001)

Input: A monotonically increasing function f : R➝ R, a range [a, b], 
a number x in R, and an error tolerance 𝜀 in R

Output: number u in [a, b] such that:
– f(t) <= x for all t in [a, u)
– x < f(t) for all t in [u + 𝜀, b)

Binary search over the reals



float u = a, v = b;

// Invariant: (f(s) <= x for s <= u) and (x < f(s) for s >= v)
while (v - u > eps) {
float t = (u + v) / 2;
if (f(t) <= x)
u = m;

else
v = m;

}

return u;

Binary search over the reals

floating point division



> Want to choose 𝜀 so that |f(t) – x| is small

> If f is differentiable, then f(t + s) ≈ f(t) + f’(t) s
– so f(t+s) – f(t) ≈ f’(t) s

> If f’(t) <= U, for some U, and we want |f(t+𝜀) – f(t)| < 𝛿
then we can take 𝜀 = 𝛿 / U
– (this works if f is not differentiable provided that it is Lipschitz continuous)

How to choose 𝜀 (out of scope)



> Rather than find the zeros of function,
we might want to minimize it

> This is always reasonable if f is convex
– definition: f((x1 + x2) / 2) <= (f(x1) + f(x2)) / 2 for all x1 & x2

Picture from en.wikipedia.org/wiki/Convex_function

Find minimum of a convex function



> Fact: differentiable function f is convex iff
its derivative f’ is monotonically increasing

> In particular, its minimum occurs where f’(t) = 0
> So we can minimize f by finding a zero of f’

– hence, we can minimize a convex function using binary search
– assuming that we can compute the derivative f’

> (actually, weaker notions of derivatives would work here)
> (e.g., a convex function is left-differentiable)

Find minimum of a convex function



> Minimize f(t) = log det(X + t Y), where X and Y are matrices
– this is R ➝ R even though it operates on matrices (tables)

> would not expect an analytical solution
– it is also convex! (not easy to prove, but true)
– would still need to compute f’ though (yuck!)

> log det(A + 𝜀 I) is called the smoothed rank of the matrix
– minimizing actual matrix rank is hard
– this gives an efficiently computable approximation
– applications to, e.g., low-dimension approximation

of high-dimensional noisy data

Example: minimize smoothed rank



> That said, binary search is not the fastest algorithm
> The fastest algorithm is Newton’s method

– in fact, Newton’s method is exponentially faster than binary search

> Cannot overstate the importance of an exponential speedup
– that said, if binary search takes O(log n) iterations,

then Newton’s method takes O(log log n) iterations
– in practice, the difference is not always important
– importance is when n is exponentially large

> then log n is polynomial, but log log n is actually small

Find minimum of a convex function



> Newton’s method requires another derivative
– so we would need the function to be twice differentiable
– if our function is multi-variate, then the second derivative is a matrix

> see the HW for an example where this would arise
– sometimes that is too much to ask

> It is actually possible to find the minimum with no derivatives...

Find minimum of a convex function



> Binary search over the reals
> Ternary search over the reals
> Applications to ML

Outline for Today



Input: a unimodal function f : R ➝ R, a range [a, b], and an
error tolerance 𝜀 in R

> unimodal means it decreases monotonically and then increases
> slightly larger class than convex

– functions can have cusps (see picture)

Picture from abcalculus.wikispaces.com/When+does+a+derivative+NOT+exist%3F

Ternary Search



Input: a unimodal function f : R ➝ R, a range [a, b], and an
error tolerance 𝜀 in R

Output: number t in [a, b] such that the minimum lies in [t, t + 𝜀]

Ternary Search



Let x1 = a + (b – a) / 3
Let x2 = a + 2 (b – a) / 3

Idea: evaluate f(x1) and f(x2)
> if f(x1) < f(x2), then the minimum cannot be in [x2, b]

– function decreases then increases
– if the minimum were in [x2, b], it would have decreased from x1 to x2

Ternary Search

a bx2x1



Let x1 = a + (b – a) / 3
Let x2 = a + 2 (b – a) / 3

Idea: evaluate f(x1) and f(x2)
> if f(x1) < f(x2), then the minimum cannot be in [x2, b]

– function decreases then increases
– if the minimum were in [x2, b], would have decreased from x1 to x2

> if f(x1) > f(x2), then the minimum cannot be in [a, x1]
– if the minimum were in [a, x1], would have increased from x1 to x2

Ternary Search

a bx2x1



> Each iteration removes 1/3 of the search space
– if f(x1) < f(x2), we eliminate [x2, b]
– if (fx1) > f(x2), we eliminate [a, x1]

> Reduced to (b – a) (2 / 3)^k after k iterations
> Done after k = log3/2 ((b – a) / 𝜀) iterations

> Takes O(log ((b – a) / 𝜀)) time if evaluating f takes O(1)
– in general, factor of O(log ((b – a) / 𝜀)) increase in time

versus time to evaluate f

Ternary Search



> Binary and ternary search reduce search space by constant 
factor (1/2 or 2/3) on each iteration

> Any algorithm with that properly will take O(log(b – a)) iterations 
to reduce to interval of length 1
– even a reduction to 99/100 of the size still works
– since (b – a) (99/100)^k = 1 is true when

k = log100/99 (b – a) = log(b – a) / log(100/99) = O(log(b – a))

“Binary Search” Most Broadly



> This is a general algorithm design approach:
try to reduce size of search space by a constant fraction
– some people consider this a type of “divide & conquer” algorithm
– I think of it as a separate group, but whatever

> Other examples of algorithms within this paradigm
> Worth trying out when you’re looking for algorithms

“Binary Search” Most Broadly



> For me, the presence of monotonicity & unimodality are usually 
the best clues to look for
– these only work in a subset of the cases
– but they are the easiest to spot and arise most often

> In particular, key idea: consider computing the inverse instead
– e.g., rather than trying to compute profit ➝ hemming cost,

compute hemming cost ➝ profit
– if it is monotonic, then you can invert with binary search

“Binary Search” Most Broadly



> Binary search over the reals
> Ternary search over the reals
> Applications to ML

Outline for Today



> Problem: want to find the best description of the data

> Choose a model that you think should look like the data
– describes the general shape

> Model usually has parameters
– parameters give the exact function

> Sub-problem: find the choice of parameters that
make the model best fit the data

Model Fitting



> You think the data should be ~linear
– not exactly linear due to measurement error etc.

> Model: y ~ A x + B
– parameter A: slope
– parameter B: y-intercept

Picture from en.wikipedia.org/wiki/Linear_regression

Example: best fit line



> Q: How do you find the best model parameters
> A: Choose the setting that minimizes / maximizes some function

– for minimization, often called a ”loss function”

> Take an ML course for details on ways choose these
– maximum likelihood
– maximum a posteriori
– regularization
– etc.

Model Fitting



> Model: y ~ A x + B

> Classical linear regression:
Find A and B to minimize sum of squared errors:

# 𝑦𝑖	 − 𝐴	𝑥𝑖 + 𝐵 2
�

.

Example: best fit line

(𝑥4, 𝑦4)



> There is a formula in this case, but not in general...
> Q: How do we fit the model?

> Note that the loss function is usually convex
– counter-example: deep learning

> A: Newton’s method

Model Fitting



> In contrast to earlier, this is never a function of one argument
– even for linear regression, we have two parameters: A and B

> Newton’s method generalizes well to multivariate functions
> However, it is not always used due to complexity

– derivative of a multivariate function is a vector (the gradient)
– second derivative is a matrix (the Hessian)
– finding this matrix is work, both theoretical and computational

> seen ML papers whose full contribution is giving formulas
for the entries of the Hessian matrix of a model

Minimizing multivariate convex function



> In contrast our earlier, this is never a function of one argument
– even for linear regression, we have two parameters: A and B

> Common alternative is gradient descent...

Minimizing multivariate convex function



> Gradient = direction of steepest ascent
> -Gradient = direction of steepest decline

> Minimize loss function by stepping along –gradient
– re-compute gradient after each step
– decrease step size on each iteration
– see numerical analysis or ML class for more...

Picture from en.wikipedia.org/Gradient_descent

Gradient Descent  (~out of scope)



> Gradient descent is widely used

> Newton’s method may be faster
– fewer iterations but more work per iteration

> also function must be twice differentiable...
– not all loss functions even differentiable once!

> see HW2 for an example

Gradient Descent (~out of scope)



> Only try stepping along coordinate axes

> Only trying to change one parameter at a time
– loss function with all parameters but one fixed
– convex function of one parameter

> still convex since the loss function is convex
– can minimize it using ternary search

Coordinate Descent



start with an initial model
– maybe all zeros or random

repeat until it “stops changing much”:
for each parameter of the model:

choose new value for the parameter that minimizes the
loss function with all other parameters fixed

Coordinate Descent for Model Fitting



Either changing A or B
Minimizing function of the form:

𝑓𝐵 𝐴 ∶= # 𝑦𝑖	 − 𝐴	𝑥𝑖 + 𝐵 2
�

.

𝑔𝐴 𝐵 ∶= # 𝑦𝑖	 − 𝐴	𝑥𝑖 + 𝐵 2
�

.

B is fixed in first definition
A is fixed in second one

Coordinate Descent for Linear Regression



> Warning: coordinate descent
does not work for all functions
– function can appear minimum along both axes

BUT not be a true minimum
– e.g., point (-2, -2) in picture

Picture from en.wikipedia.org/wiki/Coordinate_descent

Coordinate Descent



> Works for functions of the form f(x1, .., xn) + g(x1, ..., xn) where
– f is convex and differentiable
– g is separable: 𝑔 𝑥1,… , 𝑥𝑛 ∶= 	∑ 𝑔𝑖(𝑥𝑖)�

. with each gi convex

> In particular, it works for this function:

# 𝑦𝑖	 − 𝐴	𝑥𝑖 + 𝐵 2 + 𝐴 + |𝐵|
�

.

> We will use this in HW2
– (separable part is an “L1 regularization term”...

they have a tendency to make many parameters zero)

Coordinate Descent



> Fit a model to describe NFL teams

> Each NFL game as a sequence of “drives”
– drive is a series of consecutive plays with

one team’s offense against the other team’s defense
– drive starts somewhere on the field and ends somewhere else

> the team on offense wants it to end in the end zone (6 points)
> team on defense wants it to end on the other side (-2 points)

– consider expected points for drives start & end points
> average points scored by teams starting (ending) at that position

HW2



> More drives than games. More data = more predictive

> Fit a model to explain change in expected points on each drive
> Two parameters per team t: At for offense, Bt for defense

– also a constant term C

# 𝑦𝑖	 − (Aoffense	𝑖 − Bdefense	𝑖 + C)
2 +# 𝐴𝑡 + |𝐵𝑡|

�

team	I

�

drive	.

HW2



> Web page to test out the model (if you want):
– http://homes.cs.washington.edu/~kevinz/football-sim/
– simulate a game OR
– compute win probability (ó point spread)

HW2


