CSE 417 Binary Search (pt 3)

UNIVERSITY of WASHINGTON

Reminders

> **HW1 is due today**

– added a clarification on 1d

> **HW2 will be posted shortly**

- coding HW: fitting an ML model using ternary search
- start early! (might require some trial & error)

Outline for Today

> **Binary search over the reals**

- > **Ternary search over the reals**
- > **Applications to ML**

Binary search over the reals

- $>$ Above we considered f : $Z \rightarrow R$. What about f : $R \rightarrow R$?
- > Standard problem in numerical analysis...
- > But instead of inverting f, they want to find the *zeros of f*
	- these are equivalent problems:
		- $>$ to find t s.t. f(t) = x, just define g(t) = f(t) x
		- $> g(t) = 0$ means $f(t) = x$

Binary search over the reals

- > New problem: when do we stop?
	- before, if $f(t) < x$, we can try $f(t+1)$, $f(t+2)$, ...
	- now, we might need to try f(t+0.00000000001)

Input: A monotonically increasing function $f: R \rightarrow R$, a range [a, b], a number x in R, and an error tolerance ε in R

Output: number u in [a, b] such that:

- $f(t) \leq x$ for all t in [a, u)
- $x < f(t)$ for all t in [u + ε , b)

Binary search over the reals

float $u = a$, $v = b$;

// Invariant: $(f(s) \le x \text{ for } s \le u)$ and $(x \le f(s) \text{ for } s \ge v)$ while ($v - u > eps$) { float $t = (u + v) / 2$; floating point division if $(f(t) \leq x)$ $u = m$; else $V = m$; } return u;

W

How to choose ε (out of scope)

- $>$ Want to choose ε so that $|f(t) x|$ is small
- $>$ If f is differentiable, then f(t + s) \approx f(t) + f'(t) s – so f(t+s) – f(t) ≈ f'(t) s
- $>$ If f'(t) \leq U, for some U, and we want $|f(t+\varepsilon) f(t)| < \delta$ then we can take $\varepsilon = \delta / U$
	- (this works if f is not differentiable provided that it is Lipschitz continuous)

Find minimum of a convex function

> Rather than find the zeros of function, we might want to *minimize* it

- > This is always reasonable if f is convex
	- definition: $f((x_1 + x_2) / 2) \le f(x_1) + f(x_2) / 2$ for all $x_1 \& x_2$

Picture from en.wikipedia.org/wiki/Convex_function

Find minimum of a convex function

- > Fact: differentiable function f is *convex* iff its derivative f' is *monotonically increasing*
- $>$ In particular, its minimum occurs where $f'(t) = 0$
- > So we can minimize f by finding a zero of f'
	- hence, we can minimize a convex function using binary search
	- assuming that we can compute the derivative f'
		- > (actually, weaker notions of derivatives would work here)
		- > (e.g., a convex function is left-differentiable)

Example: minimize smoothed rank

- $>$ Minimize f(t) = log det(X + t Y), where X and Y are matrices
	- this is $R \rightarrow R$ even though it operates on matrices (tables) > would not expect an analytical solution
	- it is also convex! (not easy to prove, but true)
	- would still need to compute f' though (yuck!)
- $>$ log det(A + ε I) is called the smoothed rank of the matrix
	- minimizing actual matrix rank is hard
	- this gives an efficiently computable approximation
	- applications to, e.g., low-dimension approximation of high-dimensional noisy data

Find minimum of a convex function

- > That said, binary search is not the fastest algorithm
- > The fastest algorithm is Newton's method
	- in fact, Newton's method is exponentially faster than binary search
- > Cannot overstate the importance of an exponential speedup
	- that said, if binary search takes O(log n) iterations, then Newton's method takes O(log log n) iterations
	- in practice, the difference is not always important
	- importance is when n is exponentially large
		- > then log n is polynomial, but log log n is actually small

Find minimum of a convex function

- > Newton's method requires another derivative
	- so we would need the function to be twice differentiable
	- if our function is multi-variate, then the second derivative is a matrix > see the HW for an example where this would arise
	- sometimes that is too much to ask

> It is actually possible to find the minimum with *no derivatives...*

W

Outline for Today

- > **Binary search over the reals**
- > **Ternary search over the reals**
- > **Applications to ML**

Input: a *unimodal* function $f: R \rightarrow R$, a range [a, b], and an error tolerance ε in R

- > **unimodal** means it decreases *monotonically* and then increases
- > slightly larger class than convex
	- functions can have cusps (see picture)

Picture from abcalculus.wikispaces.com/When+does+a+derivative+NOT+exist%3F

Input: a *unimodal* function $f: R \rightarrow R$, a range [a, b], and an error tolerance ε in R

Output: number t in [a, b] such that the minimum lies in [t, t + ε]

Ternary Search

- Let $x_1 = a + (b a)/3$
- Let $x_2 = a + 2 (b a) / 3$
- **Idea:** evaluate $f(x_1)$ and $f(x_2)$
- $>$ if f(x₁) < f(x₂), then the minimum cannot be in [x₂, b]
	- function decreases then increases
	- if the minimum were in [x₂, b], it would have decreased from x_1 to x_2

Ternary Search

- Let $x_1 = a + (b a)/3$
- Let $x_2 = a + 2 (b a) / 3$
- **Idea:** evaluate $f(x_1)$ and $f(x_2)$
- $>$ if f(x₁) < f(x₂), then the minimum cannot be in [x₂, b]
	- function decreases then increases
	- if the minimum were in [x_2 , b], would have decreased from x_1 to x_2
- $>$ if f(x₁) $>$ f(x₂), then the minimum cannot be in [a, x₁]
	- if the minimum were in [a, x_1], would have increased from x_1 to x_2 ¹

Ternary Search

- > Each iteration removes 1/3 of the search space
	- if $f(x_1) < f(x_2)$, we eliminate $[x_2, b]$
	- if $(fx_1) > f(x_2)$, we eliminate [a, x_1]
- $>$ Reduced to (b a) (2 / 3)^{\wedge}k after k iterations
- > Done after $k = log_{3/2}((b a) / \varepsilon)$ iterations
- $>$ Takes O(log ((b a) / ε)) time if evaluating f takes O(1)
	- in general, factor of O(log ((b a) ℓ ε)) increase in time versus time to evaluate f

"Binary Search" Most Broadly

- > Binary and ternary search reduce search space by constant factor (1/2 or 2/3) on each iteration
- $>$ Any algorithm with that properly will take $O(log(b a))$ iterations to reduce to interval of length 1
	- even a reduction to 99/100 of the size still works
	- $-$ since (b a) (99/100) \wedge k = 1 is true when $k = log_{100/99} (b - a) = log(b - a) / log(100/99) = O(log(b - a))$

"Binary Search" Most Broadly

- > This is a general algorithm design approach: try to reduce size of search space by a constant fraction
	- some people consider this a type of "divide & conquer" algorithm
	- I think of it as a separate group, but whatever
- > Other examples of algorithms within this paradigm
- > Worth trying out when you're looking for algorithms

W

"Binary Search" Most Broadly

- > For me, the presence of monotonicity & unimodality are usually the best clues to look for
	- these only work in a subset of the cases
	- but they are the easiest to spot and arise most often
- > In particular, key idea: *consider computing the inverse instead*
	- $-$ e.g., rather than trying to compute profit \rightarrow hemming cost, compute hemming cost \rightarrow profit
	- if it is monotonic, then you can invert with binary search

Outline for Today

- > **Binary search over the reals**
- > **Ternary search over the reals**
- > **Applications to ML**

Model Fitting

> **Problem**: want to find the best description of the data

- > Choose a model that you think should look like the data
	- describes the general shape
- > Model usually has parameters
	- parameters give the exact function
- > **Sub-problem**: find the choice of parameters that make the model best fit the data

Example: best fit line

- > You think the data should be ~linear
	- not exactly linear due to measurement error etc.
- $>$ Model: $y \sim A x + B$
	- parameter A: slope
	- parameter B: y-intercept

Picture from en.wikipedia.org/wiki/Linear_regression

Model Fitting

> Q: How do you find the best model parameters

- > A: Choose the setting that minimizes / maximizes some function
	- for minimization, often called a "loss function"
- > Take an ML course for details on ways choose these
	- maximum likelihood
	- maximum a posteriori
	- regularization
	- etc.

Example: best fit line

- $>$ Model: $y \sim A x + B$
- > Classical linear regression: Find A and B to minimize sum of squared errors:

$$
\sum_i (y_i - (A x_i + B))^2
$$

Model Fitting

- > There is a formula in this case, but not in general...
- > Q: How do we fit the model?
- > Note that the loss function is usually convex
	- counter-example: deep learning
- > A: Newton's method

Minimizing multivariate convex function

- > In contrast to earlier, this is never a function of one argument
	- even for linear regression, we have two parameters: A and B
- > Newton's method generalizes well to multivariate functions
- > However, it is not always used due to complexity
	- derivative of a multivariate function is a vector (the gradient)
	- second derivative is a matrix (the Hessian)
	- finding this matrix is work, both theoretical and computational
		- > seen ML papers whose full contribution is giving formulas for the entries of the Hessian matrix of a model

Minimizing multivariate convex function

- > In contrast our earlier, this is never a function of one argument
	- even for linear regression, we have two parameters: A and B
- > Common alternative is gradient descent...

Gradient Descent (~out of scope)

- > Gradient = direction of steepest ascent
- > -Gradient = direction of steepest decline
- > Minimize loss function by stepping along –gradient
	- re-compute gradient after each step
	- decrease step size on each iteration
	- see numerical analysis or ML class for more...

Gradient Descent (~out of scope)

> Gradient descent is widely used

> Newton's method may be faster

- fewer iterations but more work per iteration
- > also function must be twice differentiable...
	- not all loss functions even differentiable once!
		- > see HW2 for an example

Coordinate Descent

> Only try stepping along coordinate axes

- > Only trying to change one parameter at a time
	- loss function with **all parameters but one fixed**
	- *convex* function of one parameter
		- > still convex since the loss function is convex
	- can minimize it using ternary search

Coordinate Descent for Model Fitting

start with an initial model

– maybe all zeros or random

repeat until it "stops changing much":

for each parameter of the model:

choose new value for the parameter that minimizes the loss function with all other parameters fixed

W

Coordinate Descent for Linear Regression

Either changing A or B Minimizing function of the form:

$$
f_B(A) := \sum_i (y_i - (A x_i + B))^2
$$

$$
g_A(B) := \sum_i (y_i - (A x_i + B))^2
$$

B is fixed in first definition A is fixed in second one

Coordinate Descent

- > **Warning**: coordinate descent does not work for all functions
	- function can appear minimum along both axes BUT not be a true minimum
	- e.g., point (-2, -2) in picture

Picture from en.wikipedia.org/wiki/Coordinate_descent

Coordinate Descent

> Works for functions of the form $f(x_1, ..., x_n) + g(x_1, ..., x_n)$ where

- f is convex and differentiable
- g is separable: $g(x_1, ..., x_n) := \sum_i g_i(x_i)$ with each g_i convex

> In particular, it works for this function:

$$
\sum_{i} (y_i - (A x_i + B))^2 + |A| + |B|
$$

W

- > We will use this in HW2
	- (separable part is an "L1 regularization term"... they have a tendency to make many parameters zero)

HW2

- > Fit a model to describe NFL teams
- > Each NFL game as a sequence of "drives"
	- drive is a series of consecutive plays with one team's offense against the other team's defense
	- drive starts somewhere on the field and ends somewhere else
		- > the team on offense wants it to end in the end zone (6 points)
		- > team on defense wants it to end on the other side (-2 points)
	- consider expected points for drives start & end points
		- > average points scored by teams starting (ending) at that position

HW2

- > More drives than games. More data = more predictive
- > Fit a model to explain change in expected points on each drive
- > Two parameters per team t: A_t for offense, B_t for defense
	- also a constant term C

$$
\sum_{\text{drive }i} (y_i - (A_{\text{offense }i} - B_{\text{defense }i} + C))^2 + \sum_{\text{team }t} |A_t| + |B_t|
$$

Meutral field

Offense and defense numbers indicate the amount by which those numbers are better. Each number should be between -1.00 and 1

Sim Game **Win Percent**

Win Percentages

Away: 89.8% (-16.4)

Home: 10.2% (16.4)

> Web page to test out the model (if you want):

- http://homes.cs.washington.edu/~kevinz/football-sim/
- simulate a game OR
- compute win probability (\Leftrightarrow point spread)

