CSE 417 Binary Search (pt 3)

UNIVERSITY of WASHINGTON

Reminders

> HW1 is due today

added a clarification on 1d

> HW2 will be posted shortly

- coding HW: fitting an ML model using ternary search
- start early! (might require some trial & error)

Outline for Today

> **Binary search over the reals**

- > Ternary search over the reals
- > Applications to ML

Binary search over the reals

- > Above we considered $f: Z \rightarrow R$. What about $f: R \rightarrow R$?
- > Standard problem in numerical analysis...
- > But instead of inverting f, they want to find the *zeros of f*
 - these are equivalent problems:
 - > to find t s.t. f(t) = x, just define g(t) = f(t) x
 - > g(t) = 0 means f(t) = x

Binary search over the reals

- > New problem: when do we stop?
 - before, if f(t) < x, we can try f(t+1), f(t+2), …</p>
 - now, we might need to try f(t+0.0000000001)

Input: A monotonically increasing function $f : R \rightarrow R$, a range [a, b], a number x in R, and <u>an error tolerance ε </u> in R

Output: number u in [a, b] such that:

- f(t) <= x for all t in [a, u)</pre>
- -x < f(t) for all t in [u + ε , b)

Binary search over the reals

float u = a, v = b;

// Invariant: (f(s) <= x for s <= u) and (x < f(s) for s >= v)
while (v - u > eps) {
 float t = (u + v) / 2; floating point division
 if (f(t) <= x)
 u = m;
 else
 v = m;
}
return u;</pre>

W

How to choose ε (out of scope)

- > Want to choose ε so that |f(t) x| is small
- > If f is differentiable, then $f(t + s) \approx f(t) + f'(t) s$ - so $f(t+s) - f(t) \approx f'(t) s$
- > If f'(t) <= U, for some U, and we want $|f(t+\varepsilon) f(t)| < \delta$ then we can take $\varepsilon = \delta / U$
 - (this works if f is not differentiable provided that it is Lipschitz continuous)

Find minimum of a convex function

> Rather than find the zeros of function, we might want to *minimize* it

- > This is always reasonable if f is convex
 - definition: $f((x_1 + x_2) / 2) \le (f(x_1) + f(x_2)) / 2$ for all $x_1 \& x_2$

Picture from en.wikipedia.org/wiki/Convex_function

Find minimum of a convex function

- > Fact: differentiable function f is convex iff its derivative f' is monotonically increasing
- > In particular, its minimum occurs where f'(t) = 0
- > So we can minimize f by finding a zero of f'
 - hence, we can minimize a convex function using binary search
 - assuming that we can compute the derivative f'
 - > (actually, weaker notions of derivatives would work here)
 - > (e.g., a convex function is left-differentiable)

Example: minimize smoothed rank

- > Minimize f(t) = log det(X + t Y), where X and Y are matrices
 - this is R → R even though it operates on matrices (tables)
 > would not expect an analytical solution
 - it is also convex! (not easy to prove, but true)
 - would still need to compute f' though (yuck!)
- > log det(A + ε I) is called the smoothed rank of the matrix
 - minimizing actual matrix rank is hard
 - this gives an efficiently computable approximation
 - applications to, e.g., low-dimension approximation of high-dimensional noisy data

Find minimum of a convex function

- > That said, binary search is not the fastest algorithm
- > The fastest algorithm is Newton's method
 - in fact, Newton's method is exponentially faster than binary search
- > Cannot overstate the importance of an exponential speedup
 - that said, if binary search takes O(log n) iterations, then Newton's method takes O(log log n) iterations
 - in practice, the difference is not always important
 - importance is when n is exponentially large
 - > then log n is polynomial, but log log n is actually small

Find minimum of a convex function

- > Newton's method requires another derivative
 - so we would need the function to be twice differentiable
 - if our function is multi-variate, then the second derivative is a matrix
 > see the HW for an example where this would arise
 - sometimes that is too much to ask
- > It is actually possible to find the minimum with *no derivatives...*

W

Outline for Today

- > **Binary search over the reals**
- > Ternary search over the reals
- > Applications to ML

Input: a *unimodal* function $f : R \rightarrow R$, a range [a, b], and an error tolerance ε in R

- > **unimodal** means it decreases *monotonically* and then increases
- > slightly larger class than convex
 - functions can have cusps (see picture)

Picture from abcalculus.wikispaces.com/When+does+a+derivative+NOT+exist%3F

Input: a *unimodal* function $f : R \rightarrow R$, a range [a, b], and an error tolerance ε in R

Output: number t in [a, b] such that the minimum lies in [t, t + ε]

W

Ternary Search

- Let $x_1 = a + (b a) / 3$
- Let $x_2 = a + 2 (b a) / 3$
- **Idea:** evaluate $f(x_1)$ and $f(x_2)$
- > if $f(x_1) < f(x_2)$, then the minimum cannot be in $[x_2, b]$
 - function decreases then increases
 - if the minimum were in [x_2 , b], it would have decreased from x_1 to x_2

Ternary Search

- Let $x_1 = a + (b a) / 3$
- Let $x_2 = a + 2 (b a) / 3$
- **Idea:** evaluate $f(x_1)$ and $f(x_2)$
- > if $f(x_1) < f(x_2)$, then the minimum cannot be in $[x_2, b]$
 - function decreases then increases
 - if the minimum were in $[x_2, b]$, would have decreased from x_1 to x_2
- > if $f(x_1) > f(x_2)$, then the minimum cannot be in [a, x_1]
 - if the minimum were in [a, x_1], would have increased from x_1 to x_2

Ternary Search

- > Each iteration removes 1/3 of the search space
 - if $f(x_1) < f(x_2)$, we eliminate $[x_2, b]$
 - if $(fx_1) > f(x_2)$, we eliminate $[a, x_1]$
- > Reduced to (b a) (2 / 3)^k after k iterations
- > Done after k = $\log_{3/2}$ ((b a) / ε) iterations
- > Takes O(log ((b a) / ε)) time if evaluating f takes O(1)
 - in general, factor of O(log ((b a) / ε)) increase in time versus time to evaluate f

"Binary Search" Most Broadly

- > Binary and ternary search reduce search space by constant factor (1/2 or 2/3) on each iteration
- > Any algorithm with that properly will take O(log(b a)) iterations to reduce to interval of length 1
 - even a reduction to 99/100 of the size still works
 - since $(b a) (99/100)^k = 1$ is true when k = $\log_{100/99} (b - a) = \log(b - a) / \log(100/99) = O(\log(b - a))$

W

"Binary Search" Most Broadly

- > This is a general algorithm design approach: try to reduce size of search space by a constant fraction
 - some people consider this a type of "divide & conquer" algorithm
 - I think of it as a separate group, but whatever
- > Other examples of algorithms within this paradigm
- > Worth trying out when you're looking for algorithms

W

"Binary Search" Most Broadly

- > For me, the presence of monotonicity & unimodality are usually the best clues to look for
 - these only work in a subset of the cases
 - but they are the easiest to spot and arise most often
- > In particular, key idea: *consider computing the inverse instead*
 - − e.g., rather than trying to compute profit \rightarrow hemming cost, compute hemming cost \rightarrow profit
 - if it is monotonic, then you can invert with binary search

Outline for Today

- > **Binary search over the reals**
- > Ternary search over the reals
- > Applications to ML

Model Fitting

> **Problem**: want to find the best description of the data

- > Choose a model that you think should look like the data
 - describes the general shape
- > Model usually has parameters
 - parameters give the exact function
- > Sub-problem: find the choice of parameters that make the model best fit the data

Example: best fit line

- > You think the data should be ~linear
 - not exactly linear due to measurement error etc.
- > Model: y ~ A x + B
 - parameter A: slope
 - parameter B: y-intercept

Picture from en.wikipedia.org/wiki/Linear_regression

Model Fitting

- > Q: How do you find the best model parameters
- > A: Choose the setting that minimizes / maximizes some function
 - for minimization, often called a "loss function"
- > Take an ML course for details on ways choose these
 - maximum likelihood
 - maximum a posteriori
 - regularization
 - etc.

Example: best fit line

- > Model: y ~ A x + B
- Classical linear regression:
 Find A and B to minimize sum of squared errors:

$$\sum_{i} (y_i - (A x_i + B))^2$$

Model Fitting

- > There is a formula in this case, but not in general...
- > Q: How do we fit the model?
- > Note that the loss function is usually convex
 - counter-example: deep learning
- > A: Newton's method

Minimizing *multivariate* convex function

- > In contrast to earlier, this is never a function of one argument
 - even for linear regression, we have two parameters: A and B
- > Newton's method generalizes well to multivariate functions
- > However, it is not always used due to complexity
 - derivative of a multivariate function is a vector (the gradient)
 - second derivative is a matrix (the Hessian)
 - finding this matrix is work, both theoretical and computational
 - > seen ML papers whose full contribution is giving formulas for the entries of the Hessian matrix of a model

Minimizing *multivariate* convex function

- > In contrast our earlier, this is never a function of one argument
 - even for linear regression, we have two parameters: A and B
- > Common alternative is gradient descent...

Gradient Descent (~out of scope)

- > Gradient = direction of steepest ascent
- > -Gradient = direction of steepest decline
- > Minimize loss function by stepping along –gradient
 - re-compute gradient after each step
 - decrease step size on each iteration
 - see numerical analysis or ML class for more...

Gradient Descent (~out of scope)

> Gradient descent is widely used

> Newton's method may be faster

- fewer iterations but more work per iteration
- > also function must be twice differentiable...
 - not all loss functions even differentiable once!
 - > see HW2 for an example

Coordinate Descent

> Only try stepping along coordinate axes

- > Only trying to change one parameter at a time
 - loss function with **all parameters but one fixed**
 - convex function of one parameter
 - > still convex since the loss function is convex
 - can minimize it using ternary search

Coordinate Descent for Model Fitting

start with an initial model

maybe all zeros or random

repeat until it "stops changing much":

for each parameter of the model:

choose new value for the parameter that minimizes the loss function with all other parameters fixed

W

Coordinate Descent for Linear Regression

Either changing A or B Minimizing function of the form:

$$f_B(A) := \sum_i (y_i - (A x_i + B))^2$$
$$g_A(B) := \sum_i (y_i - (A x_i + B))^2$$

B is fixed in first definition A is fixed in second one

Coordinate Descent

- > Warning: coordinate descent does not work for all functions
 - function can appear minimum along both axes
 BUT not be a true minimum
 - e.g., point (-2, -2) in picture

Picture from en.wikipedia.org/wiki/Coordinate_descent

Coordinate Descent

> Works for functions of the form $f(x_1, ..., x_n) + g(x_1, ..., x_n)$ where

- f is convex and differentiable
- g is separable: $g(x_1, ..., x_n) := \sum_i g_i(x_i)$ with each g_i convex

> In particular, it works for this function:

$$\sum_{i} (y_i - (A x_i + B))^2 + |A| + |B|$$

- > We will use this in HW2
 - (separable part is an "L1 regularization term"...
 they have a tendency to make many parameters zero)

HW2

- > Fit a model to describe NFL teams
- > Each NFL game as a sequence of "drives"
 - drive is a series of consecutive plays with one team's offense against the other team's defense
 - drive starts somewhere on the field and ends somewhere else
 - > the team on offense wants it to end in the end zone (6 points)
 - > team on defense wants it to end on the other side (-2 points)
 - consider expected points for drives start & end points
 - > average points scored by teams starting (ending) at that position

HW2

- > More drives than games. More data = more predictive
- > Fit a model to explain change in expected points on each drive
- > Two parameters per team t: A_t for offense, B_t for defense
 - also a constant term C

$$\sum_{\text{drive }i} (y_i - (A_{\text{offense }i} - B_{\text{defense }i} + C))^2 + \sum_{\text{team }t} |A_t| + |B_t|$$

	Name	Offense	Defense
Away	NE	0.5	0.5
Home	CLE	-0.5	-0.5

Neutral field

Offense and defense numbers indicate the amount by which those numbers are better. Each number should be between -1.00 and 1

Sim Game Win Percent

Win Percentages

Away: 89.8% (-16.4)

Home: 10.2% (16.4)

- > Web page to test out the model (if you want):
 - <u>http://homes.cs.washington.edu/~kevinz/football-sim/</u>
 - simulate a game OR
 - compute win probability (⇔ point spread)

