
CSE 417
Binary Search (pt 2)



> HW1 is due Wednesday
– some clarifications on Piazza

> assume cost formula is correct for any sizes, even zero
– notice the structure of these graphs...

Reminders



> Generalized binary search

Outline for Today



Most groups working on software have a shared repository that 
they all update the code in. Consider this situation:

9:04 AM  Alice submits new code
9:38 AM  Bob submits new code
9:45 AM  Charlie submits new code

... 1000 more submissions ...

6:35 PM  Alice submits new code

Example 1: who broke the code?

everything works

something is
broken



The usual tools will let you make a copy of the repository at any 
point in the past, i.e., after any of submissions.

Q: How do we figure out which submission broke it?
A: Use binary search

– copy the repository with 500 new submissions... see if it works
– if it does, try 750 submissions
– if not, try 250 submissions
– repeat until we know the last submission that worked

> the one after that broke it

Example 1: who broke the code?



Suppose that the following code computes the wrong answer:

int v = ...;

// Invariant: P(i, v)
for (int i = 0; i < 1000; i++) {
...

}

return v;

Example 2: where is the bug?

looks correct

wrong answer



At some i, we are computing the wrong value of v.

Q: How do we find the iteration that hits the bug?
A: Use binary search

– set a breakpoint to stop when i = 500... see if v is correct
– if it is, try 750
– if not, try 250
– repeat until we find the value of i that hits the bug

> As before, easy to get into the state where i = whatever

Example 2: where is the bug?



Let’s see how to describe binary search in a way that is 
broad enough to cover this case as well...

Generalized Binary Search



Input: A monotonically increasing function f : Z ➝ R, a range [a, b), 
and a number x in R

– Z means the integers
– R can be any ordered set

Output: integer t in [a, b] such that:
– f(s) <= x for all s in [a, t)
– x < f(s) for all s in [t, b)

Generalized Binary Search



Example: sorted array
– f(s) = A[s]
– f is monotonically increasing because A is sorted

Example: who broke the code
– f maps a submission number to {0, 1}
– 0 if the code works, 1 if the code is broken
– f is monotonically increasing because all submissions after the bad one leave 

it in a broken state

Exercise: where is the bug

Generalized Binary Search



int i = a, j = b;

// Invariant: f(a), ..., f(i-1) <= x and x < f(j), ..., f(b-1)
while (i < j) {
int m = (i + j) / 2;
if (f(m) <= x)
i = m + 1;

else
j = m;

}

return i;

Implementing Generalized Binary Search

only these two lines
of code changed



We can represent a general function of this type in Java 8 with

java.util.function.IntFunction<R>

This represents a function from integers to type R
– call apply(int) to invoke the function
– can pass in a function using lambdas, e.g., “x -> 2*x + 1”

Aside: Java 8 Lambdas



We could define

public int binarySearch(IntFunction<Double> f, int a, int b, double x);

and then call

binarySearch(x -> Math.tanh(x), 0, 1000, 0.9);

or even

binarySearch(Math::tanh, 0, 1000, 0.9);

Example: Java 8 Lambdas



> If each call to f takes T(n) time (for some n), then generalized 
binary search takes O(T(n) log(b – a)) time

> The log(b – a) factor is usually very small
– often so small as to be negligible
– some theoretical analysis even ignores such factors...

Generalized Binary Search Run Time



If f : Z ➝ R is monotonically increasing, binary search lets us take an x 
in R and find the t such that f(t) = x (if one exists) — i.e., inverting f

Theorem: If f : Z ➝ R is a monotonically increasing function on [a, b] 
that we can compute in T(n) time, then we can compute f -1 in time 
O(T(n) log(b – a))

– if b – a = O(n^k), then log(b – a) = k log n = O(log n)
– the log(b – a) factor is often so small as to be negligible, so we can compute f -1

in essentially the same time when f is monotonic

This hints at why binary search is so widely useful...

Generalized Binary Search



Inverting functions is usually difficult. In particular, NP-complete 
problems are inverses of functions that are efficiently computable.

In terms of what can be computed efficiently, inverting f is...

impossible if f -1 is NP-complete
free if f is monotonic

(Many possibilities in between these two.)

Foreword



HW1 Problem 1: given costs A, BS, H, and sizes MS,
find the cheapest way to manufacture all of the jean sizes

– model as a shortest path problem

Q: Find the maximum hemming cost H at which we still break even
– assume we have projected sales for our jeans, so we can project revenue
– question: how small does H need to be for manufacturing costs <= revenue
– (leave A, BS, and MS fixed)

A: binary search

Example 3: breaking even



Define f(H) = cheapest way to manufacture designer jeans
with costs A, BS, H and sizes MS

> Some complicated function...
– at H = 0, cost for using the cheapest size for every smaller size
– at H = infinity, cost for buying every size separately
– can’t describe it with a formula BUT we can compute it

> It is monotonically increasing
– cost of each way of computing increases as H increases
– minimum of those numbers can only increase as well

Example 3: breaking even



Define f(H) = cheapest way to manufacture designer jeans
with costs A, BS, H and sizes MS

> Can compute monotonically increasing f => can compute f -1

– binary search range [0, T], where T is large enough that no hemming is done
> use “repeated doubling” to find T in log T calls to f as well

– total cost is O(log T) times cost to compute manufacturing cost (f)

Example 3: breaking even



To further see how binary search can come up in surprising places,
imagine starting with the question about break-even H

– I.e., without having just seen how to compute the the manufacturing costs

> In general, if something looks hard to compute, see if we can write 
it as the inverse of some monotonic function...
– in this case, see that we can compute the (cheapest) manufacturing costs
– then see that these depend monotonically on H
– can get more creative in other examples...

Example 3: breaking even


