CSE 417 Binary Search (pt 2)

Reminders

> HW1 is due Wednesday

- some clarifications on Piazza
> assume cost formula is correct for any sizes, even zero
- notice the structure of these graphs...

Outline for Today

> Generalized binary search

Example 1: who broke the code?

Most groups working on software have a shared repository that they all update the code in. Consider this situation:

9:04 AM Alice submits new code everything works
9:38 AM Bob submits new code
9:45 AM Charlie submits new code
... 1000 more submissions ...
6:35 PM Alice submits new code
something is broken

Example 1: who broke the code?

The usual tools will let you make a copy of the repository at any point in the past, i.e., after any of submissions.

Q: How do we figure out which submission broke it?
A: Use binary search

- copy the repository with 500 new submissions... see if it works
- if it does, try 750 submissions
- if not, try 250 submissions
- repeat until we know the last submission that worked
$>$ the one after that broke it

Example 2: where is the bug?

Suppose that the following code computes the wrong answer:

```
int v = ...; \Longleftarrow looks correct
// Invariant: P(i, v)
for (int i = 0; i < 1000; i++) {
}
return v;

\section*{Example 2: where is the bug?}

At some \(i\), we are computing the wrong value of \(v\).
Q: How do we find the iteration that hits the bug?
A: Use binary search
- set a breakpoint to stop when \(i=500 \ldots\) see if \(v\) is correct
- if it is, try 750
- if not, try 250
- repeat until we find the value of \(i\) that hits the bug
> As before, easy to get into the state where \(\mathrm{i}=\) whatever

\section*{Generalized Binary Search}

Let's see how to describe binary search in a way that is broad enough to cover this case as well...

\section*{Generalized Binary Search}

Input: A monotonically increasing function \(f: Z \rightarrow R\), a range \([a, b)\), and a number x in R
- Z means the integers
- \(R\) can be any ordered set

Output: integer t in \([\mathrm{a}, \mathrm{b}]\) such that:
- \(f(\mathrm{~s})<=x\) for all s in \([\mathrm{a}, \mathrm{t})\)
\(-x<f(s)\) for all \(s\) in \([t, b)\)

\section*{Generalized Binary Search}

Example: sorted array
- \(f(s)=A[s]\)
- \(f\) is monotonically increasing because \(A\) is sorted

Example: who broke the code
- f maps a submission number to \{0, 1\}
- 0 if the code works, 1 if the code is broken
- \(f\) is monotonically increasing because all submissions after the bad one leave it in a broken state

Exercise: where is the bug

\section*{Implementing Generalized Binary Search}
```

int i = a, j = b;
// Invariant: f(a), ..., f(i-1)<= x and x<f(j), ..., f(b-1)
while (i < j) {
int m = (i + j) / 2;
if (f(m) <= x)
i = m + 1;
else
j = m;
}
return i;

Aside: Java 8 Lambdas

We can represent a general function of this type in Java 8 with
java.util.function.IntFunction<R>
This represents a function from integers to type R

- call apply(int) to invoke the function
- can pass in a function using lambdas, e.g., "x -> 2*x + 1"

Example: Java 8 Lambdas

We could define
public int binarySearch(IntFunction<Double> f, int a, int b, double x);
and then call
binarySearch(x -> Math.tanh(x), 0, 1000, 0.9);
or even
binarySearch(Math::tanh, 0, 1000, 0.9);

Generalized Binary Search Run Time

> If each call to f takes $\mathrm{T}(\mathrm{n})$ time (for some n), then generalized binary search takes $O(T(n) \log (b-a))$ time
> The $\log (b-a)$ factor is usually very small

- often so small as to be negligible
- some theoretical analysis even ignores such factors...

Generalized Binary Search

If $f: Z \rightarrow R$ is monotonically increasing, binary search lets us take an x in R and find the t such that $f(t)=x$ (if one exists) - i.e., inverting f

Theorem: If $f: Z \rightarrow R$ is a monotonically increasing function on $[a, b]$ that we can compute in $T(n)$ time, then we can compute f^{-1} in time $O(T(n) \log (b-a))$

- if $b-a=O\left(n^{\wedge} k\right)$, then $\log (b-a)=k \log n=O(\log n)$
- the $\log (b-a)$ factor is often so small as to be negligible, so we can compute f^{-1} in essentially the same time when f is monotonic

This hints at why binary search is so widely useful...

Foreword

Inverting functions is usually difficult. In particular, NP-complete problems are inverses of functions that are efficiently computable.

In terms of what can be computed efficiently, inverting f is...

impossible	if $f-1$ is NP-complete
free	if f is monotonic

(Many possibilities in between these two.)

Example 3: breaking even

HW1 Problem 1: given costs A, B_{s}, H, and sizes M_{s}, find the cheapest way to manufacture all of the jean sizes

- model as a shortest path problem

Q: Find the maximum hemming cost H at which we still break even

- assume we have projected sales for our jeans, so we can project revenue
- question: how small does H need to be for manufacturing costs <= revenue
- (leave A, B_{S}, and M_{S} fixed)

A: binary search

Example 3: breaking even

Define $\mathrm{f}(\mathrm{H})=$ cheapest way to manufacture designer jeans with costs $A, B_{S^{\prime}} H$ and sizes M_{S}
> Some complicated function...

- at $\mathrm{H}=0$, cost for using the cheapest size for every smaller size
- at H = infinity, cost for buying every size separately
- can't describe it with a formula BUT we can compute it
> It is monotonically increasing
- cost of each way of computing increases as H increases
- minimum of those numbers can only increase as well

Example 3: breaking even

Define $\mathrm{f}(\mathrm{H})=$ cheapest way to manufacture designer jeans with costs $A, B_{S^{\prime}} H$ and sizes M_{S}
> Can compute monotonically increasing $\mathrm{f}=>$ can compute f - 1

- binary search range [$0, \mathrm{~T}$], where T is large enough that no hemming is done > use "repeated doubling" to find T in log T calls to f as well
- total cost is $\mathrm{O}(\log \mathrm{T})$ times cost to compute manufacturing cost (f)

Example 3: breaking even

To further see how binary search can come up in surprising places, imagine starting with the question about break-even H

- I.e., without having just seen how to compute the the manufacturing costs
> In general, if something looks hard to compute, see if we can write it as the inverse of some monotonic function...
- in this case, see that we can compute the (cheapest) manufacturing costs
- then see that these depend monotonically on H
- can get more creative in other examples...

