CSE 417

Binary Search (pt 2)

Example 1: who broke the code?

Most groups working on software have a shared repository that
they all update the code in. Consider this situation:

9:04 AM Alice submits new code everything works
9:38 AM Bob submits new code
9:45 AM Charlie submits new code

. 1000 more submissions ...

something is

6:35 PM Alice submits new code
broken

Example 1: who broke the code?

The usual tools will let you make a copy of the repository at any
point in the past, i.e., after any of submissions.

Q: How do we figure out which submission broke it?
A: Use binary search

copy the repository with 500 new submissions... see if it works
if it does, try 750 submissions
if not, try 250 submissions

repeat until we know the last submission that worked
> the one after that broke it

Example 2: where is the bug?

Suppose that the following code computes the wrong answer:

int v = ...; looks correct
// Invariant: P(1, v)
for (int 1 = 0; 1 < 1000; i++) {

h

return v, wrong answer

Example 2: where is the bug?

At some i, we are computing the wrong value of v.

Q: How do we find the iteration that hits the bug?

A: Use binary search

— set a breakpoint to stop when i =500... see if v is correct
— ifitis, try 750

— if not, try 250

— repeat until we find the value of i that hits the bug

> As before, easy to get into the state where i = whatever

Generalized Binary Search

Let's see how to describe binary search in a way that is
broad enough to cover this case as well...

W

Generalized Binary Search

Input: A monotonically increasing function f: Z = R, a range [a, b),
and a number x in R

— Z means the integers

— Rcan be any ordered set

Output: integer tin [a, b] such that:
— f(s)<=xforallsin[a,t)

— x <f(s) for all sin [t, b) w

Generalized Binary Search

Example: sorted array
— f(s) = Als]
— fis monotonically increasing because A is sorted

Example: who broke the code
— fmaps a submission number to {0, 1}
— 0if the code works, 1 if the code is broken

— fis monotonically increasing because all submissions after the bad one leave
itin a broken state

Exercise: where is the bug

Implementing Generalized Binary Search

int1=a, J=Dh; only these two lines
// Invariant: f(a), ..., f(i-1) <= x and x < f(j), ..., f(b-1) of code changed
while (i <) {

if (f(m) <= x)

1=m+ 1;
else
j =m;

}

return 1i;

Aside: Java 8 Lambdas

We can represent a general function of this type in Java 8 with
java.util.function.IntFunction<R>

This represents a function from integers to type R

— callapply(int) to invoke the function
— can pass in a function using lambdas, e.g., “x -> 2*x + 1"

Example: Java 8 Lambdas

We could define

public int binarySearch(IntFunction<Double> f, int a, int b, double x);

and then call

binarySearch(x -> Math.tanh(x), 0, 1000, 0.9);

or even

binarySearch(Math::tanh, 0, 1000, 0.9);

Generalized Binary Search Run Time

> |f each call to f takes T(n) time (for some n), then generalized
binary search takes O(T(n) log(b - a)) time

> The log(b - a) factor is usually very small
— often so small as to be negligible
— some theoretical analysis even ignores such factors...

Generalized Binary Search

If f: Z — Ris monotonically increasing, binary search lets us take an x
in R and find the t such that f(t) = x (if one exists) — i.e., inverting f

Theorem: If f: Z = R is a monotonically increasing function on [a, b]
that we can compute in T(n) time, then we can compute f-!in time
O(T(n) log(b - a))
— if b -a=0(n"k), then log(b - a) = k log n = O(log n)
— the log(b - a) factor is often so small as to be negligible, so we can compute f-
in essentially the same time when f is monotonic

This hints at why binary search is so widely useful...

Foreword

Inverting functions is usually difficult. In particular, NP-complete
problems are inverses of functions that are efficiently computable.

In terms of what can be computed efficiently, inverting f is...

impossible if f-1is NP-complete
free if fis monotonic

(Many possibilities in between these two.)

Example 3: breaking even

HW1 Problem 1: given costs A, B¢, H, and sizes M,
find the cheapest way to manufacture all of the jean sizes
— model as a shortest path problem

Q: Find the maximum hemming cost H at which we still break even
— assume we have projected sales for our jeans, so we can project revenue
— question: how small does H need to be for manufacturing costs <= revenue

— (leave A, Bg, and M fixed)
A: binary search

Example 3: breaking even

Define f(H) = cheapest way to manufacture designer jeans
with costs A, B, H and sizes M¢

> Some complicated function...
— atH =0, cost for using the cheapest size for every smaller size
— at H = infinity, cost for buying every size separately
— can't describe it with a formula BUT we can compute it

> |tis monotonically increasing
— cost of each way of computing increases as H increases
— minimum of those numbers can only increase as well

Example 3: breaking even

Define f(H) = cheapest way to manufacture designer jeans
with costs A, B, H and sizes M¢

> Can compute monotonically increasing f => can compute f-

— binary search range [0, T], where T is large enough that no hemming is done
> use “repeated doubling” to find T in log T calls to f as well

— total cost is O(log T) times cost to compute manufacturing cost (f)

Example 3: breaking even

To further see how binary search can come up in surprising places,

imagine starting with the question about break-even H
— l.e., without having just seen how to compute the the manufacturing costs

> In general, if something looks hard to compute, see if we can write
it as the inverse of some monotonic function...
— in this case, see that we can compute the (cheapest) manufacturing costs
— then see that these depend monotonically on H
— can get more creative in other examples...

