Reminders

> HW1 is due Wednesday
> - some clarifications on Piazza
> > assume cost formula is correct for any sizes, even zero
> - notice the structure of these graphs...
Outline for Today

> Generalized binary search
Example 1: who broke the code?

Most groups working on software have a shared repository that they all update the code in. Consider this situation:

9:04 AM Alice submits new code everything works
9:38 AM Bob submits new code
9:45 AM Charlie submits new code

... 1000 more submissions ...

6:35 PM Alice submits new code something is broken
Example 1: who broke the code?

The usual tools will let you make a copy of the repository at any point in the past, i.e., after any of submissions.

Q: How do we figure out which submission broke it?
A: Use binary search
 - copy the repository with 500 new submissions... see if it works
 - if it does, try 750 submissions
 - if not, try 250 submissions
 - repeat until we know the last submission that worked
 > the one after that broke it
Example 2: where is the bug?

Suppose that the following code computes the wrong answer:

```java
int v = ...;

// Invariant: P(i, v)
for (int i = 0; i < 1000; i++) {
    ...
}
return v;
```

Looks correct
Example 2: where is the bug?

At some i, we are computing the wrong value of v.

Q: How do we find the iteration that hits the bug?
A: Use binary search
 – set a breakpoint to stop when $i = 500$... see if v is correct
 – if it is, try 750
 – if not, try 250
 – repeat until we find the value of i that hits the bug

> As before, easy to get into the state where $i = whatever$
Generalized Binary Search

Let’s see how to describe binary search in a way that is broad enough to cover this case as well...
Generalized Binary Search

Input: A monotonically increasing function $f : \mathbb{Z} \to \mathbb{R}$, a range $[a, b)$, and a number x in \mathbb{R}
 - \mathbb{Z} means the integers
 - \mathbb{R} can be any ordered set

Output: integer t in $[a, b]$ such that:
 - $f(s) \leq x$ for all s in $[a, t)$
 - $x < f(s)$ for all s in $[t, b)$
Generalized Binary Search

Example: sorted array
- $f(s) = A[s]$
- f is monotonically increasing because A is sorted

Example: who broke the code
- f maps a submission number to $\{0, 1\}$
- 0 if the code works, 1 if the code is broken
- f is monotonically increasing because all submissions after the bad one leave it in a broken state

Exercise: where is the bug
Implementing Generalized Binary Search

int i = a, j = b;
// Invariant: f(a), ..., f(i-1) <= x and x < f(j), ..., f(b-1)
while (i < j) {
 int m = (i + j) / 2;
 if (f(m) <= x)
 i = m + 1;
 else
 j = m;
}
return i;
We can represent a general function of this type in Java 8 with

```java
java.util.function.IntFunction<R>
```

This represents a function from integers to type R
- call `apply(int)` to invoke the function
- can pass in a function using lambdas, e.g., “x → 2*x + 1″
Example: Java 8 Lambdas

We could define

```java
public int binarySearch(IntFunction<Double> f, int a, int b, double x);
```

and then call

```java
binarySearch(x -> Math.tanh(x), 0, 1000, 0.9);
```

or even

```java
binarySearch(Math::tanh, 0, 1000, 0.9);
```
If each call to f takes T(n) time (for some n), then generalized binary search takes $O(T(n) \log(b - a))$ time.

The log(b – a) factor is usually very small:
- often so small as to be negligible
- some theoretical analysis even ignores such factors...
Generalized Binary Search

If $f : \mathbb{Z} \rightarrow \mathbb{R}$ is monotonically increasing, binary search lets us take an x in \mathbb{R} and find the t such that $f(t) = x$ (if one exists) — i.e., inverting f.

Theorem: If $f : \mathbb{Z} \rightarrow \mathbb{R}$ is a monotonically increasing function on $[a, b]$ that we can compute in $T(n)$ time, then we can compute f^{-1} in time $O(T(n) \log(b - a))$

- if $b - a = O(n^k)$, then $\log(b - a) = k \log n = O(\log n)$
- the $\log(b - a)$ factor is often so small as to be negligible, so we can compute f^{-1} in essentially the same time when f is monotonic

This hints at why binary search is so widely useful...
Foreword

Inverting functions is usually difficult. In particular, NP-complete problems are inverses of functions that are efficiently computable.

In terms of what can be computed efficiently, inverting f is...

impossible if f^{-1} is NP-complete
free if f is monotonic

(Many possibilities in between these two.)
Example 3: breaking even

HW1 Problem 1: given costs A, B_S, H, and sizes M_S, find the cheapest way to manufacture all of the jean sizes
 – model as a shortest path problem

Q: Find the maximum hemming cost H at which we still break even
 – assume we have projected sales for our jeans, so we can project revenue
 – question: how small does H need to be for manufacturing costs \leq revenue
 – (leave A, B_S, and M_S fixed)

A: binary search
Define $f(H) =$ cheapest way to manufacture designer jeans with costs A, B_S, H and sizes M_S

> Some complicated function...
 > at $H = 0$, cost for using the cheapest size for every smaller size
 > at $H = \infty$, cost for buying every size separately
 > can’t describe it with a formula BUT we can compute it

> It is monotonically increasing
 > cost of each way of computing increases as H increases
 > minimum of those numbers can only increase as well
Define $f(H) =$ cheapest way to manufacture designer jeans with costs A, B_S, H and sizes M_S

> Can compute monotonically increasing $f \Rightarrow$ can compute f^{-1}

 - binary search range $[0, T]$, where T is large enough that no hemming is done
 > use “repeated doubling” to find T in $\log T$ calls to f as well
 - total cost is $O(\log T)$ times cost to compute manufacturing cost (f)

Example 3: breaking even
Example 3: breaking even

To further see how binary search can come up in surprising places, imagine starting with the question about break-even H

- I.e., without having just seen how to compute the manufacturing costs

> In general, if something looks hard to compute, see if we can write it as the inverse of some monotonic function...
 - in this case, see that we can compute the (cheapest) manufacturing costs
 - then see that these depend monotonically on H
 - can get more creative in other examples...