CSE 417 Binary Search (pt 1)

Reminders

> HW1 is due next Wednesday

- fixed a typo \& added some clarification
> Lecture videos available on Canvas
- student questions cannot be heard
- back of heads can be seen
> Overloading sign up: https://goo.gl/forms/clZu6Wpy3xro69s13

Outline for Today

> Binary search on arrays \longleftarrow
> Implementing binary search

Review: Binary Search on Arrays

Input: sorted array A and a value x

- array can store any ordered set: ints, floats, strings, etc.

Output: index i in [0, A.length] s.t. A[i-1] $<=x<A[i]$
$>$ (partly vacuously true if $\mathrm{i}=0$ or $\mathrm{i}=$ A.length)

- returns where \times would be inserted to maintain ordering
- if x appears multiple times, this returns the last one
> move "<=" to the right to get the first one

Review: Binary Search on Arrays

Maintain a region of the array that is unexplored

$>$ Start with all white region
$>$ Each iteration reduces size of the white region
$>$ Finish with no white region

Review: Binary Search on Arrays

> Can reduce the size by looking at any element i:

$>$ If $A[i]<=x$, then
$>$ Else $x<A[i]$

Review: Binary Search on Arrays

> Can reduce the size by looking at any element i:

$>$ If $A[i]<=x$, then

$>$ Else $x<A[i]$

Review: Binary Search on Arrays

> Binary Search: look at the middle element of the white region

> This ensures size is cut in half each time
$>$ Size of white region approximately $\mathrm{n} / 2^{\mathrm{k}}$ after k iterations
> Done after $\mathrm{k}=\lg \mathrm{n}$ iterations

- O(1) per iteration, so O(log n) time

Review: Binary Search on Arrays

Linear search algorithm takes $O(n)$ time

- start at $\mathrm{i}=0$
- increase i by 1 each time
- stop when $A[i]<=x<A[i+1]$

Binary search is an exponential speedup

- ... since $\exp (\log \mathrm{n})=\mathrm{n}$...
- hard to overstate the importance of this

Simple application

$>$ Suppose we want to find the index i such that

$$
u A[i]+v=x
$$

> Q: How do we solve this?

- cannot compute B[i] = u * A[i] + v
- that would be exponentially slower!
$>A$: Binary search for $(x-v) / u$ since

$$
u A[i]+v=x=>A[i]=(x-v) / u
$$

Simple application 2

> Suppose we want to find the index i such that $\tanh (A[i])=x$

- (or sigmoid or any other monotonic function)
$>$ Q: How do we solve this?
> A: Search for A[i] = $\tanh ^{-1}(x)$
$>\mathrm{Q}$: What if the function is not easily invertible?
- come back to this later...

Interview question 1

> Problem: find the N-th largest number of the form $2^{2} 3^{b} 5^{c}$ for any $a, b, c>=0$

- i.e., numbers not divisible by anything other than 2,3 , or 5
> Idea: generate the numbers in order, stopping at N
> Sub-problem: find the $(m+1)$-st number of this form given first m
- we can use the first m numbers to find the next one

Interview question 1

> Sub-problem 1: find the $(m+1)$-st number of this form given first m
$>$ If $(m+1)$-st number is $2^{\text {a }} 3^{\text {b }} 5^{c}$, then $2^{\mathrm{a}-1} 3^{\mathrm{b}} 5^{\mathrm{c}}$ is smaller and also of this form (assuming $\mathrm{a}>0$), so $2^{a-1} 3^{b} 5^{c}$ is one of the first m numbers

- likewise for b and c
- next number is 2,3 , or 5 times an earlier number
> In particular, if $(m+1)$-st is $2 x$ an earlier number, then it must be the smallest 2 x earlier not in the list

Interview question 1

> Sub-problem 2: given a list A[0..m-1] of the first m numbers, in increasing order, find the smallest i such that $2 \mathrm{~A}[\mathrm{i}]>\mathrm{A}[\mathrm{m}-1]$

- equivalently, $2 \mathrm{~A}[i]>=\mathrm{A}[\mathrm{m}-1]+1$
> Q: how do we do that?
$>$ A: binary search for $(\mathrm{A}[\mathrm{m}-1]+1) / 2$

Interview question 1

$>$ Start with A = [1]
$>$ Algorithm: for $\mathrm{m}=1$ to $\mathrm{N}-1$

- binary search to find smallest i s.t. 2 * $A[i]>A[m-1]$
- ... likewise for 3 and 5
- add the smallest of these three numbers to the list
> Q: total running time?
$>$ A: O(N $\log N$)

Interview question 1

> Can we improve this further?
> Compare smallest i s.t. 2 * A[i] > A[m-1] and smallest j s.t. 2 * A[j] > A[m]

- binary search for $(A[m-1]+1) / 2$ and $(A[m]+1) / 2$
- these two indices should be close
> Seems like we're doing too much work by
- could restrict to A[i..m-1] with i from last search
- but we can do better...

Interview question 1

> Compare smallest i s.t. 2 * A[i] > A[m-1] and smallest j s.t. 2 * $A[j]>A[m]$
> Observation: they must be equal or differ by 1
$>$ Since $A[m]$ is smallest of $2 x, 3 x, 5 x \ldots$ either $A[m]=2$ * $A[i]$ or $A[m]<2$ * $A[i]$

- if $A[m]<2$ * $A[i]$, then $j=i$ since i is still big enough
- if $A[m]=2$ * $A[i]$, then $A[m]<2$ * $A[i+1]$ and $j=i+1$

Interview question 1

> Algorithm 2: maintain indexes of smallest i, j, k s.t. 2 A[i], 3 A[j], 5 A[k] > A[m-1]
for $\mathrm{m}=1$ to $\mathrm{N}-1$

- add the smallest of $2 \mathrm{~A}[\mathrm{i}], 3 \mathrm{~A}[\mathrm{j}], 5 \mathrm{~A}[\mathrm{~K}]$ to the list
- increment i, j, and/or k appropriately
> Q: total running time?
$>\mathrm{A}: \mathrm{O}(\mathrm{N})$

Interview question 1

> An example of how the fastest algorithm can be produced by starting with a basic technique + a lot of elbow grease
> Binary search disappears in the final answer even though we used to get there

- we will see other examples of this
- presentations of the best algorithm will often just describe the optimal solution directly without any binary search
> makes you sound smarter if you do it that way

Interview question 2

$>$ Find x in a sorted n x n table

- every row and every column is sorted
> Algorithm 1: binary search every row
- O(n log n) time

Interview question 2

> Find x in a sorted $n x n$ table

- every row and every column is sorted
> Once again, the binary searches are doing too much work
- usually the next answer is about the same as the previous one
> Not the case that the indexes only increase by 0 or 1 each time!
$>$ BUT the total increase over n searches is at most n :
- we only move left each time
- so we can take at most n steps all together

Interview question 2

$>$ Find x in a sorted $n x n$ table

- every row and every column is sorted
> Algorithm 1: linear every row starting from answer on previous
- O(n) time
> Again, binary search disappears

Interview question 2

> Find x in a sorted $n x n$ table

- every row and every column is sorted
> Algorithm 1: linear every row starting from answer on previous
- O(n) time
> Worth noting: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ is not much slower than $\mathrm{O}(\mathrm{n})$
- remember that $\log n$ is exponentially smaller than n
> Worth pointing out $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm in an interview

Practical example: web search

> For each word, make record of all the web pages with that word

- many terabytes of data
- too much data for one machine...
> Partition web pages randomly across machines
> Each machine records where word appears in its own pages
- have enough machines that each gets, say, 100 GB of data
> To look up all pages where word occurs:
- send request to all machines
- concatenate the lists they return

Practical example: web search

> Q: How does each machine get the pages for a word?
> A: sorting and binary search

- each machine sorts its records on disk
- look up a word by using binary search
> Algorithm works fine if A is on disk
- only need the ability to look up A[i] for any i
- can do this in Java using FileChannel instead of FileInputStream
> Cost is time for lg n disk seeks

Practical example: web search

> Key lesson: not always necessary to use dynamic data structures

- don't always need hash tables and AVL trees (or B+ trees on disk)
- they are more complex, slower, and user more memory (by constant factors)
> Only need them to support intermixed updates and searches
- sorting and binary search are fine if all the updates come first
> Sorting also works fine if the data only changes occasionally
- at one point, web indexes were only changed nightly > this is not uncommon in practice
- can add new data and re-sort at night when not in use

Outline for Today

> Binary search on arrays
> Implementing binary search

Implementing Algorithms

Key Idea: invariants - facts that are always true

- critical to correct implementation (and often run time analysis also)
- often most of the hard work is getting these right
> Rep invariant: claim about data structures
- always true (except briefly when mutating the data structures)
- ex: in AVL trees, heights of two subtrees at any node differ by at most 1
> Loop invariant: claim about method state
- always true at the top of the loop

Implementing Algorithms

> Loop invariant: claim about method state

- always true at the top of the loop
> To prove that a loop is correctly implemented, check:
- invariant is true initially
- invariant remains true each time the loop body executes
> Then know the invariant is true after the loop
- choose the invariant so that, when the loop exits, you have enough information to return a correct answer

Implementing Binary Search on Arrays

> Method state: indexes i and j
$>$ Loop invariant: $A[0], \ldots, A[i-1]<=x$ and $x<A[j], \ldots, A[n-1]$

Notes on notation:

- $A[0], \ldots, A[i-1]<=x$ means $A[0]<=x$ and \ldots and $A[i-1]<=x$
- vacuously true if $\mathrm{i}<=0$
> only making claims about indexes >= 0 and <= i-1

Implementing Binary Search on Arrays

```
int i = 0, j = n;
// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
    int m = (i + j) / 2;
    if (A[m] <= x)
        i = m + 1;
    else
        j = m;
}
return i;
```


Implementing Binary Search on Arrays

```
int i = 0, j = n;
// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
    int m = (i + j) / 2;
    if (A[m] <= x)
        i = m + 1;
    else
        j = m;
}
return i;
```


Implementing Binary Search on Arrays

```
int i = 0, j = n;
// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
    int m = (i + j) / 2;
    if (A[m] <= x)
        i = m + 1;
    else
        j = m;
}
return i;
A[i-1] = A[m] <= x
                            Q: What about A[i], ..., A[m-1]?
```


Implementing Binary Search on Arrays

```
int i = 0, j = n;
// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
    int m = (i + j) / 2;
    if (A[m] <= x)
        i = m + 1;
    else
        j = m;
}
return i;
A[i-1] = A[m] <= x
Q: What about A[i], ..., A[m-1]?
A: Also <= \(x\) since \(A\) is sorted
```


Implementing Binary Search on Arrays

```
int i = 0, j = n;
// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
    int m = (i + j) / 2;
    if (A[m] <= x)
        i = m + 1;
    else
        j=m; 
}
return i;
```


Implementing Binary Search on Arrays

```
int i = 0, j = n;
// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
    int m = (i + j) / 2;
    if (A[m] <= x)
        i = m + 1;
    else
        j=m; 
}
return i;
    x<A[m+1],..,A[j-1]
    since A is sorted
```


Implementing Binary Search on Arrays

// Invariant: $A[0], \ldots, A[i-1]<=x$ and $x<A[j], \ldots, A[n-1]$
while (i < j) \{ ... \}
$>$ When we exit the loop, we have

- $\mathrm{i}=\mathrm{j}$ and $\mathrm{A}[0], \ldots, \mathrm{A}[\mathrm{i}-1]<=\mathrm{x}$ and $\mathrm{x}<\mathrm{A}[\mathrm{j}], \ldots, \mathrm{A}[\mathrm{n}-1]$
$>$ (actually, we only obviously have $\mathrm{i}>=\mathrm{j}$, but a more careful check shows $\mathrm{i}=\mathrm{j}$)
- in other words, $A[0], \ldots, A[i-1]<=x$ and $x<A[i], \ldots, A[n-1]$
- thus, the problem specification says i is exactly what we promised to return
$>$ this is not uncommon...
> loop invariants are often "weakened" versions of output promise

Implementing Binary Search on Arrays

> When we exit the loop, we return the right answer
> Q: Do we actually exit the loop?

- usually you get that from the run time analysis,
- but we did this somewhat sloppily....
> A: Yes, provided that i increases or j decreases every time.
> Q: Do they?

Implementing Binary Search on Arrays

$>$ We set $m=(i+j) / 2$

- this means that $\mathrm{i}<=\mathrm{m}<=\mathrm{j}$
$>$ If we set $\mathrm{i}=\mathrm{m}+1$, then $\mathrm{i}_{\text {new }}>=\mathrm{i}_{\text {old }}+1$
- looks good!
$>$ If we set $\mathrm{j}=\mathrm{m}$, then $\mathrm{j}_{\text {new }}<=\mathrm{j}_{\text {old }}$
- we are in trouble if $m=j_{\text {old }}$!

Implementing Binary Search on Arrays

> Can we have $\mathrm{m}=\mathrm{j}$ when we set $\mathrm{m}=(\mathrm{i}+\mathrm{j}) / 2$?
> Can see that m will be closer to j when i is closer to j ... so consider $\mathrm{i}=\mathrm{j}-1$ (the worst case)
> Then $m=(j-1+j) / 2=(2 j-1) / 2 . .$.
> In Java, this integer division will truncate to j-1

- we got lucky!
> But Math.round((i + j) / 2.0) could loop forever!

Implementing Binary Search on Arrays

Lessons:

1. invariants are critical to implementing complex algorithms \& data structures
2. implementing algorithms correctly requires careful attention to detail > easy to make mistakes on this, one of the easiest algorithms we will see!
$>$ this comes up in interviews too
3. if a library implementation is available, use it!
> don't waste your time or risk releasing buggy code

Implementing Binary Search on Arrays

> For the most part, we will stick to pseudocode from here on

- you'll still need to write code in the HWs
> From a theory perspective, this wasn't a real problem
- we only run into it when j - i is small
- we could switch to linear search when j - i < 1000 asymptotic complexity would be the same

