
CSE 417
Binary Search (pt 1)



> HW1 is due next Wednesday
– fixed a typo & added some clarification

> Lecture videos available on Canvas
– student questions cannot be heard
– back of heads can be seen

> Overloading sign up: 
https://goo.gl/forms/clZu6Wpy3xro69s13

Reminders



> Binary search on arrays
> Implementing binary search

Outline for Today



Input: sorted array A and a value x
– array can store any ordered set: ints, floats, strings, etc.

Output: index i in [0, A.length] s.t. A[i-1] <= x < A[i]
> (partly vacuously true if i = 0 or i = A.length)

– returns where x would be inserted to maintain ordering
– if x appears multiple times, this returns the last one

>move “<=” to the right to get the first one

Review: Binary Search on Arrays



Maintain a region of the array that is unexplored

<= x x <

> Start with all white region
> Each iteration reduces size of the white region
> Finish with no white region

Review: Binary Search on Arrays



> Can reduce the size by looking at any element i:

i
> If A[i] <= x, then

> Else x < A[i]

Review: Binary Search on Arrays

Why?



> Can reduce the size by looking at any element i:

i
> If A[i] <= x, then

> Else x < A[i]

Review: Binary Search on Arrays

only because
A is sorted



> Binary Search: look at the middle element of the white region

i
> This ensures size is cut in half each time
> Size of white region approximately n / 2k after k iterations
> Done after k = lg n iterations

– O(1) per iteration, so O(log n) time

Review: Binary Search on Arrays



Linear search algorithm takes O(n) time
– start at i = 0
– increase i by 1 each time
– stop when A[i] <= x < A[i+1]

Binary search is an exponential speedup
– ... since exp(log n) = n ...
– hard to overstate the importance of this

Review: Binary Search on Arrays



> Suppose we want to find the index i such that
u A[i] + v = x

> Q: How do we solve this?
– cannot compute B[i] = u * A[i] + v
– that would be exponentially slower!

> A: Binary search for (x-v) / u since
u A[i] + v = x  =>  A[i] = (x – v) / u

Simple application



> Suppose we want to find the index i such that
tanh(A[i]) = x

– (or sigmoid or any other monotonic function)

> Q: How do we solve this?
> A: Search for A[i] = tanh-1(x)
> Q: What if the function is not easily invertible?

– come back to this later...

Simple application 2



> Problem: find the N-th largest number of the form 2a3b5c

for any a, b, c >= 0
– i.e., numbers not divisible by anything other than 2, 3, or 5

> Idea: generate the numbers in order, stopping at N

> Sub-problem: find the (m+1)-st number of this form given first m
– we can use the first m numbers to find the next one

Interview question 1



> Sub-problem 1: find the (m+1)-st number of this form given first m

> If (m+1)-st number is 2a3b5c,
then 2a-13b5c is smaller and also of this form (assuming a > 0),
so 2a-13b5c is one of the first m numbers
– likewise for b and c
– next number is 2, 3, or 5 times an earlier number

> In particular, if (m+1)-st is 2 x an earlier number,
then it must be the smallest 2 x earlier not in the list

Interview question 1



> Sub-problem 2: given a list A[0..m-1] of the first m numbers, in 
increasing order, find the smallest i such that 2 A[i] > A[m-1]
– equivalently, 2 A[i] >= A[m-1] + 1

> Q: how do we do that?
> A: binary search for (A[m-1]+1) / 2

Interview question 1



> Start with A = [1]

> Algorithm: for m = 1 to N-1
– binary search to find smallest i s.t. 2 * A[i] > A[m-1]
– ... likewise for 3 and 5
– add the smallest of these three numbers to the list

> Q: total running time?
> A: O(N log N)

Interview question 1



> Can we improve this further?

> Compare smallest i s.t. 2 * A[i] > A[m-1] and
smallest j s.t. 2 * A[j] > A[m]

– binary search for (A[m-1]+1) / 2 and (A[m]+1) / 2
– these two indices should be close

> Seems like we’re doing too much work by
– could restrict to A[i..m-1] with i from last search
– but we can do better...

Interview question 1



> Compare smallest i s.t. 2 * A[i] > A[m-1] and
smallest j s.t. 2 * A[j] > A[m]

> Observation: they must be equal or differ by 1
> Since A[m] is smallest of 2x, 3x, 5x... either A[m] = 2 * A[i] or A[m] < 2 * A[i]

– if A[m] < 2 * A[i], then j = i since i is still big enough
– if A[m] = 2 * A[i], then A[m] < 2 * A[i+1] and j = i+1

Interview question 1



> Algorithm 2: maintain indexes of smallest i, j, k s.t.
2 A[i], 3 A[j], 5 A[k] > A[m-1]

for m = 1 to N-1
– add the smallest of  2 A[i], 3 A[j], 5 A[k] to the list
– increment i, j, and/or k appropriately

> Q: total running time?
> A: O(N)

Interview question 1



> An example of how the fastest algorithm can be produced by 
starting with a basic technique + a lot of elbow grease

> Binary search disappears in the final answer even though we 
used to get there
– we will see other examples of this
– presentations of the best algorithm will often just describe the optimal 

solution directly without any binary search
> makes you sound smarter if you do it that way

Interview question 1



> Find x in a sorted n x n table
– every row and every column is sorted

> Algorithm 1: binary search every row
– O(n log n) time

Interview question 2



> Find x in a sorted n x n table
– every row and every column is sorted

> Once again, the binary searches are doing too much work
– usually the next answer is about the same as the previous one

> Not the case that the indexes only increase by 0 or 1 each time!
> BUT the total increase over n searches is at most n:

– we only move left each time
– so we can take at most n steps all together

Interview question 2



> Find x in a sorted n x n table
– every row and every column is sorted

> Algorithm 1: linear every row starting from answer on previous
– O(n) time

> Again, binary search disappears

Interview question 2



> Find x in a sorted n x n table
– every row and every column is sorted

> Algorithm 1: linear every row starting from answer on previous
– O(n) time

> Worth noting: O(n log n) is not much slower than O(n)
– remember that log n is exponentially smaller than n

> Worth pointing out O(n log n) algorithm in an interview

Interview question 2



> For each word, make record of all the web pages with that word
– many terabytes of data
– too much data for one machine...

> Partition web pages randomly across machines
> Each machine records where word appears in its own pages

– have enough machines that each gets, say, 100 GB of data

> To look up all pages where word occurs:
– send request to all machines
– concatenate the lists they return

Practical example: web search



> Q: How does each machine get the pages for a word?
> A: sorting and binary search

– each machine sorts its records on disk
– look up a word by using binary search

> Algorithm works fine if A is on disk
– only need the ability to look up A[i] for any i
– can do this in Java using FileChannel instead of FileInputStream

> Cost is time for lg n disk seeks

Practical example: web search



> Key lesson: not always necessary to use dynamic data structures
– don’t always need hash tables and AVL trees (or B+ trees on disk)
– they are more complex, slower, and user more memory (by constant factors)

> Only need them to support intermixed updates and searches
– sorting and binary search are fine if all the updates come first

> Sorting also works fine if the data only changes occasionally
– at one point, web indexes were only changed nightly

> this is not uncommon in practice
– can add new data and re-sort at night when not in use

Practical example: web search



> Binary search on arrays
> Implementing binary search

Outline for Today



Key Idea: invariants — facts that are always true
– critical to correct implementation (and often run time analysis also)
– often most of the hard work is getting these right

> Rep invariant: claim about data structures
– always true (except briefly when mutating the data structures)
– ex: in AVL trees, heights of two subtrees at any node differ by at most 1

> Loop invariant: claim about method state
– always true at the top of the loop

Implementing Algorithms



> Loop invariant: claim about method state
– always true at the top of the loop

> To prove that a loop is correctly implemented, check:
– invariant is true initially
– invariant remains true each time the loop body executes

> Then know the invariant is true after the loop
– choose the invariant so that, when the loop exits,

you have enough information to return a correct answer

Implementing Algorithms



> Method state: indexes i and j
> Loop invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]

i j n
Notes on notation:

– A[0], ..., A[i-1] <= x means A[0] <= x and ... and A[i-1] <= x
– vacuously true if i <= 0

> only making claims about indexes >= 0 and <= i-1

Implementing Binary Search on Arrays



int i = 0, j = n;

// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
int m = (i + j) / 2;
if (A[m] <= x)
i = m + 1;

else
j = m;

}

return i;

Implementing Binary Search on Arrays
true initially



int i = 0, j = n;

// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
int m = (i + j) / 2;
if (A[m] <= x)
i = m + 1;

else
j = m;

}

return i;

Implementing Binary Search on Arrays

A[i-1] = A[m] <= x



int i = 0, j = n;

// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
int m = (i + j) / 2;
if (A[m] <= x)
i = m + 1;

else
j = m;

}

return i;

Implementing Binary Search on Arrays

A[i-1] = A[m] <= x

Q: What about A[i], ..., A[m-1]?



int i = 0, j = n;

// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
int m = (i + j) / 2;
if (A[m] <= x)
i = m + 1;

else
j = m;

}

return i;

Implementing Binary Search on Arrays

A[i-1] = A[m] <= x

Q: What about A[i], ..., A[m-1]?
A: Also <= x since A is sorted



int i = 0, j = n;

// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
int m = (i + j) / 2;
if (A[m] <= x)
i = m + 1;

else
j = m;

}

return i;

Implementing Binary Search on Arrays

x < A[m] = A[j]



int i = 0, j = n;

// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) {
int m = (i + j) / 2;
if (A[m] <= x)
i = m + 1;

else
j = m;

}

return i;

Implementing Binary Search on Arrays

x < A[m] = A[j] 

x < A[m+1], .., A[j-1] 
since A is sorted



// Invariant: A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]
while (i < j) { ... }

> When we exit the loop, we have
– i = j and A[0], ..., A[i-1] <= x and x < A[j], ..., A[n-1]

> (actually, we only obviously have i >= j, but a more careful check shows i = j)
– in other words, A[0], ..., A[i-1] <= x and x < A[i], ..., A[n-1]
– thus, the problem specification says i is exactly what we promised to return

> this is not uncommon...
> loop invariants are often “weakened” versions of output promise

Implementing Binary Search on Arrays



> When we exit the loop, we return the right answer

> Q: Do we actually exit the loop?
– usually you get that from the run time analysis,
– but we did this somewhat sloppily....

> A: Yes, provided that i increases or j decreases every time.
> Q: Do they?

Implementing Binary Search on Arrays



> We set m = (i + j) / 2
– this means that i <= m <= j

> If we set i = m + 1, then inew >= iold + 1
– looks good!

> If we set j = m, then jnew <= jold
– we are in trouble if m = jold!

Implementing Binary Search on Arrays



> Can we have m = j when we set m = (i + j) / 2?

> Can see that m will be closer to j when i is closer to j...
so consider i = j – 1 (the worst case)

> Then m = (j – 1 + j) / 2 = (2j – 1) / 2...
> In Java, this integer division will truncate to j – 1

– we got lucky!

> But Math.round((i + j) / 2.0) could loop forever!

Implementing Binary Search on Arrays



Lessons:

1. invariants are critical to implementing complex algorithms & data structures

2. implementing algorithms correctly requires careful attention to detail
> easy to make mistakes on this, one of the easiest algorithms we will see!
> this comes up in interviews too

3. if a library implementation is available, use it!
> don’t waste your time or risk releasing buggy code

Implementing Binary Search on Arrays



> For the most part, we will stick to pseudocode from here on
– you’ll still need to write code in the HWs

> From a theory perspective, this wasn’t a real problem
– we only run into it when j – i is small
– we could switch to linear search when j – i < 1000

asymptotic complexity would be the same

Implementing Binary Search on Arrays


