CSE 417

Practical Algorithms

(a.k.a. Algorithms & Computational Complexity)

UNIVERSITY of WASHINGTON







Why study algorithms?

> Learn the history of important algorithms

W



Why study algorithms?
| b g -

W



Why study algorithms?
| b g -

> Appreciate their beauty

W



Why study algorithms?

| ot . T
! e

W



Why study algorithms?

| ot . T
! e

> Impress your friends with your knowledge

W



Why study algorithms?

| ot . T
! e
| i arele vt medead

W



Why study algorithms?

I he i ‘| s orit]
! . heir]
I i amde it I e

> |nventing new algorithms is part of the everyday work
of computer scientists in practice

W



Why study algorithms?




Why study algorithms?

; '“F“e“t”'g new aigorithms is part of the-everyday work

> Algorithms are critical to the successful use of
computers in every subfield of CS




Applications of Important Algorithms

> compilers > signal processing

> databases > computer graphics
> networking > scientific computing
> cryptography > web search

W

> Al & machine learning > big data analytics
> computational biology > ...




Applications of Important Algorithms

“Everyone knows Moore's law — a prediction made in
1965 by Intel co-founder Gordon Moore that the density
of transistors in integrated circuits would continue to
double every 1 to 2 years.... In many areas, performance
gains due to improvements in algorithms have vastly
exceeded the dramatic performance gains due to
increased processor speed.”

— Excerpt from Report to the President and Congress:
Designing a Digital Future, December 2010 (page 71)




Why study algorithms?

> Algorithms are critical to the successful use of computers in
every subfield of computer science

— understanding the underlying techniques will make these algorithms easier
to follow when you encounter them in other subfields

> There will be opportunities to invent new algorithms in practice
— and when you do so, it often has a huge impact
— the previous slides are examples of this

> (Algorithms also come up in coding interviews.)




Course Goal

> Teach you techniques that you can use to create new
algorithms in practice when the opportunity arises
— (orin coding interviews)
— they will also help you understand existing algorithms

W



Course Non-Goals

> Teach you the most historically important algorithms

— we will see some important algorithms, but this will not be a
survey course on important algorithms

> Teach you the fastest known algorithms for problems
— they are usually not the best demonstrations of the

W

technigques that we want to discuss




Course Topics

Shortest Paths (mainly in HW)
Binary Search

Divide & Conquer

Dynamic Programming
Network Flows

Branch & Bound

o unhkwnN =




Course Topics

Design Techniques Modeling Techniques
1. Divide & Conquer 1. Shortest Paths

2. Dynamic Programming 2. Binary Search

3. Branch & Bound 3. Network Flows

W



Course Topics

Design Techniques

1. Divide & Conquer

2. Dynamic Programming
3. Branch & Bound

Techniques that you can apply to design new algorithms
— each of these has a good chance of being useful in practice




Course Topics

Modeling Techniques
1. Shortest Paths

2. Binary Search

3. Network Flows

Solve new problems by transforming them into familiar ones

— these three are the most likely to show up in practice
— learning to recognize them is a useful skill




Course Topics vs Usual

Greedy

Divide & Conquer
Dynamic Programming
Network Flows
NP-Completeness

Binary Search

Divide & Conquer
Dynamic Programming
Network Flows

Branch & Bound

s W -
AR A e

W




Course Topics vs Usual

Greedy (today only)
Divide & Conquer

Dynamic Programming
Network Flows
NP-Completeness

1. Binary Search

2. Divide & Conquer

3. Dynamic Programming
4. Network Flows

5. Branch & Bound

— (and NP-completeness)

> Topics will be fairly standard,
but emphasis will be different

s N =







People

> Instructor Kevin Zatloukal kevinz at cs
> TAS Phillip Dang phdang1 at uw
Angli Liu anglil at uw

Alon Milchgrub alonmil at uw

W




About Me

> UW graduate
> Ph.D. from MIT

— quantum algorithms

> Worked in industry for 15 years
— Google, Microsoft, BEA Systems, startup

W



Prerequisites (from CSE 373)

> Asymptotic complexity and big-O notation

> Familiar with some algorithms for
— sorting
— shortest paths
— minimum spanning trees

W



Format

> Lectures Mon, Wed, Fri
— slides will be posted
— but they are just visual aids

> No quiz sections

> Office hours Tue, Wed, Thu, Fri w




Workload

> 9 homework assignments
— 4 on paper
— 5 coding

> final exam (no midterm)




Grading

> 25%  written assignments
> 50% coding assignments
> 25% final exam

Coding assignments best test the skills | care about

W




Late Policy

> 10 percent penalty per late day
— but life happens so...

> 3 free late days for the quarter
— each is a 24 hour extension
— save for true emergencies




Collaboration

>
>

>

Discussing course content with others is encouraged
Be sure to use the Piazza discussion board

BUT assignments are to be completed individually
— misrepresenting others’ work as your own is academic misconduct

See the course web site for detailed policy




@ CSE 417: Practical Algorithms BT A
NS Welcome to CSE 417!
o
Syllabus ) - ) ) . ) ) ) )
e I e This course will discuss the design and analysis of algorithms, with a paricular emphasis on those techniques that are
Academic Integrity likely to be useful for creating new algorithms in practice. The main topics to be covered are designing algorithms using
the divide and conquer, dynamic programming, and branch and bound approaches as well as modeling problems as

Schedule instances of binary search or network flow problems. We will also briefly discuss the theory of NP-completeness as
motivation for some of the techniques we examine.

Lectures
Assignments Administrative Information
Exams Instructor: Kevin Zatloukal (kevinz at cs)
Teaching Assistants:
M M ° Discussion board Phillip Dang phdang1 at uw
> Malin source of info:
Gradebook Alon Milchgrub  alonmil at uw

Lectures: Mondays, Wednesdays, & Fridays from 1:30pm-2:20pm in GWN 201

See the calendar for up-to-date office hours.

o o
— OO times & locations
. Contact:
—_— a S S I g n m e n tS Please use the discussion board whenever possible for questions about lectures or homework assignments. The

answer to your question is likely to be helpful to others in the class, and by using the discussion board, it will be
available to them as well.

- Ca | e n d a r For grading or other private matters, please send email directly to the grader or instructor.
— link to Piazza (discussion board)

> https://courses.cs.washington.edu/courses/cse417/18wi




Textbook

> Algorithm Design by Kleinberg & Tardos ! | i"m'“»[‘ﬂ HESHH]
e e J

— good introduction and useful reference | | JoN KuEINBERG - EVA TARDOS

> Many other good books:
— e.g. Introduction to Algorithms by Cormen, Leiserson, & Rivest

> | may also make use of other sources, especially:
— Combinatorial Optimization by Papadimitriou & Steiglitz
— Network Flows by Ahuja, Magnanti, & Orlin
— both are advanced texts but could be useful after the course




Introduction
Other Materials Why Study

Algorithms?

> Tim Roughgarden (Stanford) has
video lectures posted on youtube

> They cover many of the topics that we will discuss
— He also has lectures from follow-on courses on some more

advanced topics
> Also testing out recording of these lectures... w




Warning

> Designing this version of the course from scratch
— all new assignments, some new topics, etc.

> Will need your feedback
— reasonableness of workload

— choice of due dates
— topics that do and don’t make sense

— eftc.







What is a greedy algorithm?

> For problems that involve a series of choices
— often an optimization problem (e.g., max or min something)

> Greedy approach makes each decision in a way that is optimal for
that individual choice ignoring implications for future choices

> Rarely does this ever produce optimal solutions...




Real-life example

> When the alarm goes off in the morning, hitting the snooze
button six times in a row seems like a great idea
— maximizes happiness during that time period

> But those decisions affect future options available...

> Sleeping through lecture is probably not optimal




What is a greedy algorithm?

> The greedy approach rarely produces optimal solutions
But sometimes it does!

> Those are greedy algorithms
— they compute the actual solution
— (otherwise, it is called a “greedy heuristic”)




Example: minimum spanning tree

> Input: connected, weighted graph G with n nodes

> let F be an empty graph on the same nodes
fori=1ton-1:
add the lowest weight edge of G that does not create a cycle

> This is Kruskal's algorithm
— returns a spanning tree: a graph with n - 1 edges and no cycles

> For each of the n - 1 decisions of which edge to add,
it chooses the edge of lowest weight
— no regard for implications on future choices




Example: minimum spanning tree

> Clear that it returns a spanning tree
> Not clear that it returns the minimum weight spanning tree

> Choices we make in one iteration affect later iterations

— by picking the lowest weight edge in one cycle, we could miss out on an edge
that we need in a later iteration

— adding one edge means some others won't be allowed in the future because
they now create a cycle

> We need an explanation of why this can’'t happen...




Kruskal: proof of correctness

> Suppose that we pick edge e that is not in the MST
> Removing e from F would disconnected graph into S & T

W




Kruskal: proof of correctness

>
>
>
>

Suppose that we pick edge e that is not in the MST
Removing e from F would disconnected graph into S & T
In the MST, adding e would create a cycle spanning S & T
Let f be another edge on this cycle that connects S and T:

MST




Kruskal: proof of correctness

> At the point in Kruskal's algorithm when e was added:
— graph F had a subset of the final edges, so S & T were disconnected
— hence, adding f would not have created a cycle either... so it was eligible to add

> Since e had lowest weight amongst those: weight e <= weight f

F when about
to add e




Kruskal: proof of correctness

> Replacing f with e in the MST cannot increase it's weight
> Hence, there is an MST that includes e!
> Now, repeat this for every edge until the MST is our tree...

MST*




Why not cover greedy?

> Usually have complex proofs of correctness en.wikipedia.org/Siberian_tiger
— skipped important details in the Kruskal example
— better for a math course than this one (see MATH 409)

> Rarely encountered in nature
— most have names you know: Dijkstra, Kruskal, Prim

> Lulls you into thinking the greedy approach is usually correct
— itisn't!
— even when you aren’t looking for exact solutions,
greedy heuristics are rarely the best approach







