
CSE 417
Practical Algorithms
(a.k.a. Algorithms & Computational Complexity)

> Course Goals & Overview
> Administrivia
> Greedy Algorithms

Outline for Today

> Learn the history of important algorithms

Why study algorithms?

> Learn the history of important algorithms

Why study algorithms?

> Learn the history of important algorithms
> Appreciate their beauty

Why study algorithms?

> Learn the history of important algorithms
> Appreciate their beauty

Why study algorithms?

> Learn the history of important algorithms
> Appreciate their beauty
> Impress your friends with your knowledge

Why study algorithms?

> Learn the history of important algorithms
> Appreciate their beauty
> Impress your friends with your knowledge

Why study algorithms?

> Learn the history of important algorithms
> Appreciate their beauty
> Impress your friends with your knowledge
> Inventing new algorithms is part of the everyday work

of computer scientists in practice

Why study algorithms?

> Learn the history of important algorithms
> Appreciate their beauty
> Impress your friends with your knowledge
> Inventing new algorithms is part of the everyday work

of computer scientists in practice

Why study algorithms?

> Learn the history of important algorithms
> Appreciate their beauty
> Impress your friends with your knowledge
> Inventing new algorithms is part of the everyday work

of computer scientists in practice
> Algorithms are critical to the successful use of

computers in every subfield of CS

Why study algorithms?

> compilers
> databases
> networking
> cryptography
> AI & machine learning
> computational biology

Applications of Important Algorithms

> signal processing
> computer graphics
> scientific computing
> web search
> big data analytics
> ...

“Everyone knows Moore’s law — a prediction made in
1965 by Intel co-founder Gordon Moore that the density
of transistors in integrated circuits would continue to
double every 1 to 2 years.... In many areas, performance
gains due to improvements in algorithms have vastly
exceeded the dramatic performance gains due to
increased processor speed.”

Applications of Important Algorithms

— Excerpt from Report to the President and Congress:
Designing a Digital Future, December 2010 (page 71)

> Algorithms are critical to the successful use of computers in
every subfield of computer science
– understanding the underlying techniques will make these algorithms easier

to follow when you encounter them in other subfields

> There will be opportunities to invent new algorithms in practice
– and when you do so, it often has a huge impact
– the previous slides are examples of this

> (Algorithms also come up in coding interviews.)

Why study algorithms?

> Teach you techniques that you can use to create new
algorithms in practice when the opportunity arises
– (or in coding interviews)
– they will also help you understand existing algorithms

Course Goal

> Teach you the most historically important algorithms
– we will see some important algorithms, but this will not be a

survey course on important algorithms

> Teach you the fastest known algorithms for problems
– they are usually not the best demonstrations of the

techniques that we want to discuss

Course Non-Goals

1. Shortest Paths (mainly in HW)
2. Binary Search
3. Divide & Conquer
4. Dynamic Programming
5. Network Flows
6. Branch & Bound

Course Topics

Design Techniques
1. Divide & Conquer
2. Dynamic Programming
3. Branch & Bound

Course Topics

Modeling Techniques
1. Shortest Paths
2. Binary Search
3. Network Flows

Design Techniques
1. Divide & Conquer
2. Dynamic Programming
3. Branch & Bound

Techniques that you can apply to design new algorithms
– each of these has a good chance of being useful in practice

Course Topics

Solve new problems by transforming them into familiar ones
– these three are the most likely to show up in practice
– learning to recognize them is a useful skill

Course Topics

Modeling Techniques
1. Shortest Paths
2. Binary Search
3. Network Flows

1. Binary Search
2. Divide & Conquer
3. Dynamic Programming
4. Network Flows
5. Branch & Bound

Course Topics vs Usual

1. Greedy
2. Divide & Conquer
3. Dynamic Programming
4. Network Flows
5. NP-Completeness

1. Binary Search
2. Divide & Conquer
3. Dynamic Programming
4. Network Flows
5. Branch & Bound

– (and NP-completeness)

> Topics will be fairly standard,
but emphasis will be different

Course Topics vs Usual

1. Greedy (today only)
2. Divide & Conquer
3. Dynamic Programming
4. Network Flows
5. NP-Completeness

> Course Goals & Overview
> Administrivia
> Greedy Algorithms

Outline for Today

> Instructor Kevin Zatloukal kevinz at cs
> TAs Phillip Dang phdang1 at uw

Angli Liu anglil at uw
Alon Milchgrub alonmil at uw

People

> UW graduate

> Ph.D. from MIT
– quantum algorithms

> Worked in industry for 15 years
– Google, Microsoft, BEA Systems, startup

About Me

> Asymptotic complexity and big-O notation

> Familiar with some algorithms for
– sorting
– shortest paths
– minimum spanning trees

Prerequisites (from CSE 373)

> Lectures Mon, Wed, Fri
– slides will be posted
– but they are just visual aids

> No quiz sections

> Office hours Tue, Wed, Thu, Fri

Format

> 9 homework assignments
– 4 on paper
– 5 coding

> final exam (no midterm)

Workload

> 25% written assignments
> 50% coding assignments
> 25% final exam

Coding assignments best test the skills I care about

Grading

> 10 percent penalty per late day
– but life happens so...

> 3 free late days for the quarter
– each is a 24 hour extension
– save for true emergencies

Late Policy

> Discussing course content with others is encouraged
> Be sure to use the Piazza discussion board

> BUT assignments are to be completed individually
– misrepresenting others’ work as your own is academic misconduct

> See the course web site for detailed policy

Collaboration

> Main source of info:
– OO times & locations
– assignments
– calendar
– link to Piazza (discussion board)

> https://courses.cs.washington.edu/courses/cse417/18wi

Web Site

> Algorithm Design by Kleinberg & Tardos
– good introduction and useful reference

> Many other good books:
– e.g. Introduction to Algorithms by Cormen, Leiserson, & Rivest

> I may also make use of other sources, especially:
– Combinatorial Optimization by Papadimitriou & Steiglitz
– Network Flows by Ahuja, Magnanti, & Orlin
– both are advanced texts but could be useful after the course

Textbook

> Tim Roughgarden (Stanford) has
video lectures posted on youtube

Other Materials

> They cover many of the topics that we will discuss
– He also has lectures from follow-on courses on some more

advanced topics

> Also testing out recording of these lectures...

> Designing this version of the course from scratch
– all new assignments, some new topics, etc.

> Will need your feedback
– reasonableness of workload
– choice of due dates
– topics that do and don’t make sense
– etc.

Warning

> Course Goals & Overview
> Administrivia
> Greedy Algorithms

Outline for Today

> For problems that involve a series of choices
– often an optimization problem (e.g., max or min something)

> Greedy approach makes each decision in a way that is optimal for
that individual choice ignoring implications for future choices

> Rarely does this ever produce optimal solutions...

What is a greedy algorithm?

> When the alarm goes off in the morning, hitting the snooze
button six times in a row seems like a great idea
– maximizes happiness during that time period

> But those decisions affect future options available...

> Sleeping through lecture is probably not optimal

Real-life example

> The greedy approach rarely produces optimal solutions
But sometimes it does!

> Those are greedy algorithms
– they compute the actual solution
– (otherwise, it is called a “greedy heuristic”)

What is a greedy algorithm?

> Input: connected, weighted graph G with n nodes

> let F be an empty graph on the same nodes
for i = 1 to n – 1:

add the lowest weight edge of G that does not create a cycle

> This is Kruskal’s algorithm
– returns a spanning tree: a graph with n – 1 edges and no cycles

> For each of the n – 1 decisions of which edge to add,
it chooses the edge of lowest weight
– no regard for implications on future choices

Example: minimum spanning tree

> Clear that it returns a spanning tree
> Not clear that it returns the minimum weight spanning tree

> Choices we make in one iteration affect later iterations
– by picking the lowest weight edge in one cycle, we could miss out on an edge

that we need in a later iteration
– adding one edge means some others won’t be allowed in the future because

they now create a cycle

> We need an explanation of why this can’t happen...

Example: minimum spanning tree

> Suppose that we pick edge e that is not in the MST
> Removing e from F would disconnected graph into S & T

Kruskal: proof of correctness

e

S

T

F

> Suppose that we pick edge e that is not in the MST
> Removing e from F would disconnected graph into S & T
> In the MST, adding e would create a cycle spanning S & T
> Let f be another edge on this cycle that connects S and T:

Kruskal: proof of correctness

f	

e

S

T
MST

> At the point in Kruskal’s algorithm when e was added:
– graph F had a subset of the final edges, so S & T were disconnected
– hence, adding f would not have created a cycle either... so it was eligible to add

> Since e had lowest weight amongst those: weight e <= weight f

Kruskal: proof of correctness

f	

e

S

T

F	when	about
to	add	e

> Replacing f with e in the MST cannot increase it’s weight
> Hence, there is an MST that includes e!
> Now, repeat this for every edge until the MST is our tree...

Kruskal: proof of correctness

f	

e

S

T
MST*

> Usually have complex proofs of correctness
– skipped important details in the Kruskal example
– better for a math course than this one (see MATH 409)

> Rarely encountered in nature
– most have names you know: Dijkstra, Kruskal, Prim

> Lulls you into thinking the greedy approach is usually correct
– it isn’t!
– even when you aren’t looking for exact solutions,

greedy heuristics are rarely the best approach

Why not cover greedy?

en.wikipedia.org/Siberian_tiger

> HW1 is posted
– due next Wednesday

> Information on overloading on Friday

Reminders

