Graphs and Graph Algorithms

Slides by Larry Ruzzo

Goals

Graphs: defns, examples, utility, terminology

Representation: input, internal

Traversal: Breadth- & Depth-first search

Three Algorithms:

Connected components

Bipartiteness

Topological sort

Graphs

An extremely important formalism for representing (binary) relationships

Objects: "vertices," aka "nodes"

Relationships between pairs: "edges," aka "arcs"

Formally, a graph G = (V, E) is a pair of sets, V the vertices and E the edges

Meg Ryan was in "French Kiss" with Kevin Kline

Meg Ryan was in "Sleepless in Seattle" with Tom Hanks

Kevin Bacon was in "Apollo 13" with Tom Hanks

Objects & Relationships

The Kevin Bacon Game:

Obj: Actors

Rel: Two are related if they've been in a movie together

Exam Scheduling:

Obj: Classes

Rel: Two are related if they have students in common

Traveling Salesperson Problem:

Obj: Cities

Rel: Two are related if can travel directly between them

Graphs don't live in Flatland

Geometrical drawing is mentally convenient, but mathematically irrelevant: 4 drawings, I graph.

Specifying undirected graphs as input

What are the vertices?

What are the edges?

One possibility:
(symmetric) adjacency
matrix

Specifying directed graphs as input

What are the vertices?

What are the edges?

(Nonsymmetric) adjacency matrix:

	$\mid A \mid$	7	3	4
\overline{A}	0	0	1	1
7	0	0	0	0
3	0	0	0	0
4	1	1	1	0

Vertices vs # Edges

Let G be an undirected graph with n vertices and m edges. How are n and m related?

Vertices vs # Edges

Let G be an undirected graph with n vertices and m edges. How are n and m related?

Since

every edge connects two different vertices (no loops), and no two edges connect the same two vertices (no multi-edges),

it must be true that:

$$0 \le m \le n(n-1)/2 = O(n^2)$$

More Cool Graph Lingo

A graph is called *sparse* if $m \ll n^2$, otherwise it is dense

Boundary is somewhat fuzzy; O(n) edges is certainly sparse, $\Omega(n^2)$ edges is dense.

Sparse graphs are common in practice

E.g., all planar graphs are sparse $(m \le 3n-6, \text{ for } n \ge 3)$

Q: which is a better run time, O(n+m) or $O(n^2)$?

More Cool Graph Lingo

A graph is called *sparse* if $m \ll n^2$, otherwise it is dense

Boundary is somewhat fuzzy; O(n) edges is certainly sparse, $\Omega(n^2)$ edges is dense.

Sparse graphs are common in practice

E.g., all planar graphs are sparse $(m \le 3n-6, \text{ for } n \ge 3)$

Q: which is a better run time, O(n+m) or $O(n^2)$?

A: $O(n+m) = O(n^2)$, but n+m usually way better!

Representing Graph G = (V,E)

internally, indp of input format

Vertex set $V = \{v_1, ..., v_n\}$

Adjacency Matrix A

A[i,j] = I iff
$$(v_i, v_j) \in E$$

Space is n^2 bits

Advantages?

Disadvantages?

	A	7	3	4
\overline{A} 7	0	0	1	1
7	0	0	0	1
3	1	0	0	1
4	1	1	1	0

Representing Graph G = (V,E)

internally, indp of input format

Vertex set $V = \{v_1, ..., v_n\}$

Adjacency Matrix A

$$A[i,j] = I \text{ iff } (v_i,v_j) \in E$$

Space is n² bits

	\boldsymbol{A}	7	3	4
\overline{A} 7	0	0	1	1
7	0	0	0	1
3	1	0	0	1
4	1	1	1	0

Advantages:

O(1) test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs, both in storage and access

Representing Graph G=(V,E)

n vertices, m edges

Adjacency List:

O(n+m) words

Advantages?

Disadvantages?

Representing Graph G=(V,E)

n vertices, m edges

Adjacency List:

O(n+m) words

Advantages:

Compact for sparse graphs

Disadvantages

More complex data structure no O(I) edge test

Representing Graph G=(V,E)

n vertices, m edges

Adjacency List:

O(n+m) words

Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, if needed, (don't bother if not)

Graph Traversal

Learn the basic structure of a graph "Walk," *via edges*, from a fixed starting vertex s to all vertices reachable from s

Being orderly helps. Two common ways:

Breadth-First Search: order the nodes in successive layers based on distance from s

Depth-First Search: more natural approach for exploring a maze; many efficient algs build on it. 28

Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue

Graph Traversal: Implementation

Learn the basic structure of a graph "Walk," via edges, from a fixed starting vertex s to all vertices reachable from s

```
Three states of vertices undiscovered discovered fully-explored
```

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" BFS(s)

```
mark s "discovered"

queue = { s }

while queue not empty

u = remove_first(queue)

for each edge {u,x}

if (x is undiscovered)

mark x discovered

append x on queue

mark u fully explored
```


BFS: Analysis, I

```
Global initialization: mark all vertices "undiscovered"
O(n)
      BFS(s)
 +
          mark s "discovered"
O(1)
          queue = \{s\}
O(n)
         while queue not empty
 X
             u = remove first(queue)
O(n)
             for each edge {u,x}
                 if (x is undiscovered)
                     mark x discovered
                     append x on queue
             mark u fully explored
O(n^2)
```

Simple analysis: 2 nested loops. Get worst-case number of iterations of each; multiply.

BFS: Analysis, II

Above analysis correct, but pessimistic (can't have $\Omega(n)$ edges incident to each of $\Omega(n)$ distinct "u" vertices if G is sparse). Alt, more global analysis:

Each edge is explored once from each end-point, so *total* runtime of inner loop is O(m).

Exercise: extend algorithm and analysis to non-connected graphs

Total O(n+m), n = # nodes, m = # edges

Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from v to x.

Edges into then-undiscovered vertices define a **tree**– the "breadth first spanning tree" of G

Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from v to x.

Edges into then-undiscovered vertices define a **tree**- the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices *u* such that the shortest path (in G, not just the tree) from the root v is of length i.

All non-tree edges join vertices on the same or adjacent levels

not true of every spanning tree!

Why fuss about trees?

Trees are simpler than graphs

Ditto for algorithms on trees vs algs on graphs So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure

E.g., BFS finds a tree s.t. level-jumps are minimized DFS (below) finds a different tree, but it also has interesting structure...

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" BFS(s)

```
mark s "discovered"

queue = { s }

while queue not empty

u = remove_first(queue)

for each edge {u,x}

if (x is undiscovered)

mark x discovered

append x on queue

mark u fully explored
```

Exercise: modify code to compute level numbers

Label edges as tree edges or non-tree edges (within/ between)

Number of distinct shortest paths

Want to answer questions of the form: given vertices u and v, is there a path from u to v?

Set up one-time data structure to answer such questions efficiently.

```
initial state: all v undiscovered
for v = I to n do
    if state(v) != fully-explored then
        BFS(v)
    endif
endfor

Total cost: O(n+m)
    each edge is touched a constant number of times (twice)
    works also with DFS
```

Want to answer questions of the form:

given vertices u and v, is there a path from u to v?

Idea: create array A such that

A[u] = smallest numbered vertex that is connected to u. Question reduces to whether A[u]=A[v]?

Q: Why not create 2-d array Path[u,v]?

Want to answer questions of the form:

given vertices u and v, is there a path from u to v?

Idea: create array A such that

A[u] = smallest numbered vertex that is connected to u. Question reduces to whether A[u]=A[v]?

Q: Why not create 2-d array Path[u,v]?

```
initial state: all v undiscovered
for v = 1 to n do
   if state(v) != fully-explored then
       BFS(v): setting A[u] \leftarrowv for each u found
       (and marking u discovered/fully-explored)
   endif
endfor
Total cost: O(n+m)
  each edge is touched a constant number of times (twice)
  works also with DFS
```