Graphs and Graph Algorithms

Slides by Larry Ruzzo

Goals

Graphs: defns, examples, utility, terminology
Representation: input, internal
Traversal: Breadth- & Depth-first search
Three Algorithms:

Connected components

Bipartiteness

Topological sort

Graphs

An extremely important formalism for
representing (binary) relationships

Obijects: "vertices," aka "nodes”

Relationships between pairs: "edges," aka
"arcsll

Formally, a graph G = (V, E) is a pair of sets,
V the vertices and E the edges

Objects & Relationships

The Kevin Bacon Game:

Obij: Actors

Rel: Two are related if they've been in a movie together
Exam Scheduling:

Obij: Classes

Rel: Two are related if they have students in common
Traveling Salesperson Problem:

Obij: Cities

Rel: Two are related if can travel directly between them

Undirected Graph G = (V,E)

Undirected Graph G = (V,E)

/
N \@
@\
O—
o ?
[®

Undirected Graph G = (V,E)

Undirected Graph G = (V,E)

@
@ / ~ ;'Seg
@ "multl-
P G
O

Undirected Graph G = (V,E)

Graphs don't live in Flatland

Geometrical drawing is mentally
convenient, but mathematically
irrelevant: 4 drawings, | graph.

A

. 4 9‘@

Directed Graph G = (V,E)

Directed Graph G = (V,E)

P
/@‘* \@
O—
N o
/8 & ©

Directed Graph G = (V,E)

Directed Graph G = (V,E)

Directed Graph G = (V,E)

Specifying undirected
graphs as input

What are the vertices!?

Explicitly list them:
{"A", ||7", ||3"’ "4"}
What are the edges!?

One possibility: A T 3 4

(symmetric) adjacenc A0 O 1 |

! i | ! 710 O O]
matrix

311 0 0 1

4 11 1 1 O

Specifying directed

graphs as input

What are the vertices?
Explicitly list them:
{"A", ||7", ||3"’ "4"}

What are the edges!?

(Nonsymmetric) adjacency
matrix:

N w39 >

S OO =B

Vertices vs # Edges

Let G be an undirected graph with n vertices and m
edges. How are n and m related!?

Vertices vs # Edges

Let G be an undirected graph with n vertices and m
edges. How are n and m related!?

Since

every edge connects two different vertices (no loops),
and no two edges connect the same two vertices (no
multi-edges),

it must be true that;

0 =<m =<n(n-1)/2 = O(n?)

20

More Cool Graph Lingo

A graph is called sparse if m < n?, otherwise it is
dense

Boundary is somewhat fuzzy; O(n) edges is certainly
sparse, {)(n?) edges is dense.

Sparse graphs are common in practice

E.g., all planar graphs are sparse (m < 3n-6, for n = 3)

Q: which is a better run time, O(n+m) or O(n?)?

21

More Cool Graph Lingo

A graph is called sparse if m < n?, otherwise it is
dense

Boundary is somewhat fuzzy; O(n) edges is certainly
sparse, {)(n?) edges is dense.

Sparse graphs are common in practice

E.g., all planar graphs are sparse (m < 3n-6, for n = 3)

Q: which is a better run time, O(n+m) or O(n?)?

A: O(n+m) = O(n?), but n+m usually way better!

22

Representing Graph G = (V,E)

* internally, indp of input format

Vertex set V ={v, ..., v } ®/®\\
Adjacency Matrix A O——0
Ali,j] = 1'iff (v,v) EE

A
Space is n? bits 7
3
4

Advantages!

Disadvantages!?

Representing Graph G = (V,E)

* internally, indp of input format

Vertex set V ={v, ..., v }

I

Adjacency Matrix A

11l = 1 A 7 3 4
Ali,j] = | iff (vi,vj) cE e
Space is n? bits 710 0 0 1

301 0 0 1
411 1 1 0

Advantages:

O() test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs, both in
storage and access L

m < n2

@

24

Representing Graph G=(V,E)

n vertices, m edges

Adjacency List: v. -z [=
O(n+m) words _ —
: : 77
Vo [12i1715:i1T°16 7
Advantages! |73 | - . 7
Disadvantages!? Vi /)

25

Representing Graph G=(V,E)

Adjacency List:

O(n+m) words
Advantages:

Compact for
sparse graphs

Disadvantages

n vertices, m edges

Lo

: v
4 7
b
13 ¥
1. 7
15:iT1T 716 7

> i

More complex data structure

no O(l) edge test

26

Representing Graph G=(V,E)

n vertices, m edges

Adjacency List: -

. I he I A v

Vi L
O(n+m) words — -
A I i
Vo [T 13 &

- = = S

Vo [—12i4—15 16

Back- and cross pointers more work to build, but
allow easier traversal and deletion of edges, if
needed, (don't bother if not)

27

Graph Traversal

Learn the basic structure of a graph

"Walk," via edges, from a fixed starting vertex
s to all vertices reachable from s

Being orderly helps. Two common ways:

Breadth-First Search: order the nodes in
successive layers based on distance from s

Depth-First Search: more natural approach for
exploring a maze; many efficient algs build on it. 2

Breadth-First Search

Completely explore the vertices in order of
their distance from s

Naturally implemented using a queue

29

Graph Traversal: Implementation

Learn the basic structure of a graph

"Walk," via edges, from a fixed starting vertex
s to all vertices reachable from s

Three states of vertices
undiscovered
discovered
fully-explored

30

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered™
BFS(s)
mark s "“discovered™
queue ={s }
while queue not empty
u = remove_first(queue)
for each edge {u,x}
if (x is undiscovered)
mark x discovered
append x on queue

mark u fully explored
31

Queue:
8910 11

Queue:
101112 13

BFS: Analysis, |

o(n) Global initialization: mark all vertices "undiscovered”
+ BFS(s)

O(l) mark s "discovered"
+

O(n) :
. while queue not empty Simple analysis:

o) u = remove_first(queue) 2 nested loops.
Get worst-case
number of
iterations of
each; multiply.

queue ={ s}

for each edge {u,x}
if (x is undiscovered)
mark x discovered

append X on queue

= mark u fully explored
O(n?)

BFS: Analysis, I

Above analysis correct, but pessimistic (can't have

(2(n) edges incident to each of Q(n) distinct "u
vertices if G is sparse). Alt, more global analysis:

Each edge is explored once Exercise: extend

- lgorithm and
from each end-point, so total ~ |°°7 """
analysis to non-

runtime of inner loop is O(m). | connected graphs

Total O(n+m), n = # nodes, m = # edges

41

Properties of (Undirected) BFS(V)

BFS(v) visits x if and only if there is a path in G from
Vv to X.

Edges into then-undiscovered vertices define a tree
— the "breadth first spanning tree" of G

42

Properties of (Undirected) BFS(V)

BFS(v) visits x if and only if there is a path in G from

Vv to X.
Edges into then-undiscovered vertices define a tree

— the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices

u such that the shortest path (in G, not just the ot true

tree) from the root v is of length i. , | of every
« . spanning

All non-tree edges join vertices on the tree!

same or adjacent levels J

43

BFS Application: Shortest Paths
Tree (solid edges) O
gives shortest
paths from

start vertex

can label by distances from start
all edges connect same/adjacent levels ,,

BFS Application: Shortest Paths
(1) 0

Tree (solid edges)

gives shortest "
paths from
start vertex

can label by distances from start
all edges connect same/adjacent levels

BFS Application: Shortest Paths
(1) 0

Tree (solid edges)

gives shortest "
paths from
start vertex

can label by distances from start
all edges connect same/adjacent levels ,,

BFS Application: Shortest Paths
o 0

Tree (solid edges)
gives shortest
paths from

start vertex

can label by distances from start
all edges connect same/adjacent levels

Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs

So, this is often a good way to approach a graph
problem: find a "nice" tree in the graph, i.e., one

such that non-tree edges have some simplifying
structure

E.g., BFS finds a tree s.t. level-jumps are minimized

DFS (below) finds a different tree, but it also has
Interesting structure...

48

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"

BFS(s)
mark s “discovered™
queue ={s }
while queue not empty
u = remove_first(queue)
for each edge {u,x}
if (x is undiscovered)
mark x discovered
append x on queue
mark u fully explored

Exercise: modify
code to compute
level numbers

Label edges as tree
edges or non-tree
edges (within/
between)

Number of distinct
shortest paths

Graph Search Application:
Connected Components

Want to answer questions of the form:

given vertices u and v, is there a
path from u to v!

Set up one-time data structure to answer such
questions efficiently.

50

Graph Search Application:
Connected Components

initial state: all v undiscovered

forv=1tondo
if state(v) != fully-explored then
BFS(v)
endif Exercise: modify
endfor code to answer CC
queries

Total cost: O(n+m)
each edge is touched a constant number of times (twice)
works also with DFS

51

Graph Search Application:
Connected Components

Want to answer questions of the form:

given vertices u and v, is there a
path from u to v!

|dea: create array A such that q
. Why not
A[u] = smallest numbered vertex that |create 2-d

is connected to u. Question reduces |array
_ Path[u,v]?
to whether A[u]=A[v]!

52

Graph Search Application:
Connected Components

Want to answer questions of the form:

given vertices u and v, is there a
path from u to v!

|dea: create array A such that q
. Why not
A[u] = smallest numbered vertex that |create 2-d

is connected to u. Question reduces |array
_ Path[u,v]?
to whether A[u]=A[v]!

53

Graph Search Application:
Connected Components

initial state: all v undiscovered
forv=1tondo
if state(v) != fully-explored then

BFS(v): setting A[u] <V for each u found
(and marking u discovered/fully-explored)

endif
endfor

Total cost: O(n+m)
each edge is touched a constant number of times (twice)

works also with DFS
54

