Counting Inversions

Instructor: Anna Karlin

Outline of proof that algorithm for counting inversions is correct:

- Prove by induction on k, that if the algorithm correctly sorts and counts inversions in arrays of length 2^k , then it correctly sorts and counts inversions in arrays of length 2^{k+1} .
- Base case: k = 0. An array of length 1 is automatically sorted and has 0 inversions.
- Given an array of length 2^{k+1} , let L represent the left half and R represent the right half. Each of these is an array of length 2^k . By the inductive hypothesis, we can assume that applying our algorithm to these two half arrays yields two sorted subarrays (we will still call them L and R), and correctly computes the inversions internal to each half.

Thus, we only need to show that the merge step correctly sorts them (which I will skip – this is merge sort), and that it correctly counts the number of inversions between L and R.

• For the latter, we make the following key claim:

Consider the point at which the t smallest elements from L and R have been added to the combined array A. Call these elements S_t . Our inductive claim is that during the Merge-And-Count step, we have already counted all L - R inversions that involve at least one element from S_t .

Clearly this is true for t = 0. Suppose it is true for some larger t. When the $(t+1)^{st}$ element, say x, is added to A, then all L - R inversions that involve it and some element of S_t have already been counted by the inductive hypothesis. Let L_t be the left over elements of L(not yet added to A) and let R_t be the leftover elements of R. Thus, we only need to worry about inversions between x and other elements of $L_t \cup R_t$. If $x \in L_t$, then no new inversions involving x are created, since it is smaller than all remaining elements of R_t , and was to the left of them in the array prior to the merge step. If $x \in R_t$, then it is inverted relative to all elements remaining in L_t . But in this case, we add $|L_t|$ to our left-right inversion count. Thus, all inversions including x are included in the total count, and the claim holds for S_{t+1} .