Algorithms

Huffman Codes:
An Optimal Data Compression
Method

Slides by Larry Ruzzo

Compression Example

|00k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char: 800kbits
23> 6; 3 bits/char: 300kbits

Why?

Storage, transmission vs computational resources

Compression Example

|00k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char: 800kbits E.g-:OO
23> 6; 3 bits/char: 300kbits b 0l
better: d 10
2.52 bits/char 74%+2 +26%+4: 252kbits c 1100
Optimal? e 110l
f 1110

Why not:
00

0l

10

110

1101
1110

Data Compression

Binary character code (“code”)

each k-bit source string maps to unique code word
(e.g. k=8)

“compression” alg: concatenate code words for
successive k-bit “strings” of source

Variable length codes
Code words not necessarily of equal length
Prefix codes

no code word is prefix of another (unique decoding)

Prefix Codes = Trees

Greedy ldea #1

Put most frequent
under root, then recurse ...

Too greedy:

unbalanced tree
A5%1 + .16%2 + ,13*%3 .. = 2.34
not too bad, but imagine if all
freqs were ~1/6:
(1+243+4+5+5)/6=3.33

speips, with ~50%
welgheln each; recurse
(Shannon-Fano"tod
Again, not terrible
2% 543*5=25
But this tree
can easily be
improved! (How?)

[b:13][c:12][d:16]| e:9 |
8

45%
13%
12%
16%
9%
5%

Greedy idea #3

0O QOO0 TD

Bottom up: Group
least frequent letters
near bottom

—

(L1:5][e:0])b:18][c:12] [d: 16 [a:45)
@

L1

45*1 + .41*3 + .14*4 = 2.24 bits per char

Huffman’s Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq
while queue length > | do
remove smallest 2; call them x, y
make new node z from them, with f(z) = f(x) + f(y)
insert z into queue
Analysis: O(n) heap ops: O(n log n)
Goal: Minimize B(T)=E_chreq(c)*depth(c)

Correctness: ?

Correctness Strategy

Optimal solution may not be unique, so
cannot prove that greedy gives the only
possible answer.

Instead, show that greedy’s solution is as
good as any.

How: an exchange argument

Defn: A pair of leaves is an inversion if
depth(x) = depth(y)
and

freq(x) = freq(y)

Claim: If we flip an inversion, cost never increases.

Defn: A pair of leaves is an inversion if
depth(x) = depth(y)
and

freq(x) = freq(y)

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more frequent
letter the shorter code.

(d0)*f(x) + d(y)*f(y)) - (d0)*f(y) + d(y)*f(x)) =
(d0q) - d(y)) * (f(x) - f(y)) = 0

l.e., non-negative cost savings.

Lemma I:
“Greedy Choice Property”

The 2 least frequent letters might
as well be siblings at deepest level

®
@
~

e \
—g w~

Lemma I:
“Greedy Choice Property”

The 2 least frequent letters might
as well be siblings at deepest level
Let a be least freq, b 2

Let u, v be siblings at
max depth, f(u) < f(v) ®
(why must they exist?) '\
Then (a,u) and (b,v) are /

inversions. Swap them. g i i

Lemma 2

Let (C, f) be a problem instance: C an n-letter alphabet with
letter frequencies f(c) for c in C.

For any x, y in C, let C' be the (n-1) letter alphabet
C - {xy} U {z} and for all c in C" define

f(c) if c=x,y,z

f©= f(x)+f(y) if c=2

Let T' be an optimal tree for (C'f').
Then

is optimal for (C,f) among all trees having x,y as siblings

Proof:

B()=Y _ dpe) f(c)

B(T)-B(T") = dp(x) - (f(x)+ f(¥) - dp(2) ['(z)
=(dp () +1) (D) -dp(2) f'(2)
=f'@

Suppose f(having x &y as siblings) is better than T, i.e.

B(f) < BET). CAoIIapse x & y to z, forming T ;as above:
B(T)-B(T") = f'(z)

Then: . .
B(T")=B(T) - f'(z2) <B(T)- f'(z)=B(T")

Contradicting optimality of T'

Theorem:
Huffman gives optimal codes

Proof: induction on |C|
Basis: n=2 immediate
Induction: n>2
Let x,y be least frequent
Form C’, f', & z, as above
By induction, T" is opt for (C',f")
By lemma 2, T" —T is opt for (C,f) among trees

with x,y as siblings
By lemma I, some opt tree has X, y as siblings

Therefore, T is optimal.

20

Data Compression

Huffman is optimal.

BUT still might do better!

Huffman encodes fixed length blocks. What if we vary
them?

Huffman uses one encoding throughout a file. What if
characteristics change?

What if data has structure? E.g. raster images, video,...
Huffman is lossless. Necessary?

LZW, MPEG, ...

21

