
CSE 417: Review	

Larry Ruzzo	

	

1	

2	

Complexity, I	

Asymptotic Analysis	

Best/average/worst cases	

Upper/Lower Bounds	

Big O, Theta, Omega	

definitions; intuition	

Analysis methods	

loops 	

recurrence relations	

common data structures, subroutines	

3	

Graph Algorithms	

Graphs	

Representation (edge list/adjacency matrix)	

Breadth/depth first search	

Connected components	

Shortest paths/bipartitness/2-Colorability	

DAGS and topological ordering	

DFS/articulation points/biconnected components	

Design Paradigms	

Greedy	

emphasis on correctness arguments, e.g. stay ahead,
structural characterizations, exchange arguments	

Divide & Conquer	

recursive solution, superlinear work, balanced
subproblems, recurrence relations, solutions, Master
Theorem	

Later: 	

Dynamic Programming	

	

4	

5	

Examples	

Greedy	

Interval Scheduling Problems (3)	

Huffman Codes	

Examples where greedy fails (stamps/change, scheduling, knap, RNA,…)	

6	

Examples	

Divide & Conquer	

Merge sort	

Closest pair of points	

Integer multiplication (Karatsuba)	

Matrix multiplication (Strassen – see HW)	

Powering	

Some Typical Exam Questions	

Give O() bound on 17n*(n-3+logn)	

Give O() bound on some code {for i=1 to n {for j …}}!
True/False: If X is O(n2), then it’s rarely more than n3 +14 steps.	

Explain why a given greedy alg is/isn’t correct	

Give a run time recurrence for a recursive alg, or solve a simple one	

Simulate any of the algs we’ve studied on given input	

7	

Midterm Friday, 5/9/2014

Closed book, no notes

(no bluebook needed; scratch paper may
be handy; calculators unnecessary)

All up through “Divide & Conquer”
assigned reading up through Ch 5;

slides

homework & solutions
8	

Final Review	

9	

Final Exam Coverage	

Comprehensive, all topics covered ���
(but with post-midterm bias)	

assigned reading	

slides	

homework & solutions	

midterm review slides still relevant, plus those
below	

	

10	

Design Paradigms	

Greedy	

emphasis on correctness arguments, e.g. stay ahead,
structural characterizations, exchange arguments	

Divide & Conquer	

recursive solution, superlinear work, balanced
subproblems, recurrence relations, solutions, Master
Theorem	

Dynamic Programming	

recursive solution, redundant subproblems, few	

do all in careful order and tabulate; OPT table	

(usually far superior to “memoization”)	

	

 11	

Examples	

Dynamic programming	

Fibonacci	

Making change/Stamps	

Weighted Interval Scheduling	

RNA	

Knapsack	

12	

Complexity, II	

P vs NP	

Big-O and poly vs exponential growth	

Definition of NP – hints/certificates and verifiers	

Example problems from slides, reading & hw	

SAT, VertexCover, quadratic Diophantine equations, clique, independent
set, TSP, Hamilton cycle, coloring, max cut, …	

P ⊆ NP ⊆ Exp (and worse)	

Definition of (polynomial time) reduction	

SAT ≤p Independent Set example	

SAT ≤p Knapsack example	

Definition of NP-completeness	

2x approximation to Euclidean TSP	

13	

how, why correct,
why ≤p, implications!

Abstract!
!

We prove NP-hardness results for five of Nintendo’s largest
video game franchises: Mario, Donkey Kong, Legend of Zelda,
Metroid, and Pokémon. Our results apply to Super Mario Bros. 1,
3, Lost Levels, and Super Mario World; Donkey Kong Country 1–
3; all Legend of Zelda games except Zelda II: The Adventure of
Link; all Metroid games; and all Pokémon role-playing games.
For Mario and Donkey Kong, we show NP-completeness. In
addition, we observe that several games in the Zelda series are
PSPACE-complete.! 14	

Final Exam Mechanics

Closed book, 1 pg notes (8.5x11, 2 sides, handwritten)

(no bluebook needed; scratch paper may be
handy; calculators probably unnecessary)

15	

Some Typical Exam Questions	

Give O() bound on 17n*(n-3+logn)	

Give O() bound on some code {for i=1 to n {for j …}}!
True/False: If X is O(n2), then it’s rarely more than n3 +14 steps.	

Explain why a given greedy alg is/isn’t correct	

Give a run time recurrence for a recursive alg, or solve a simple one	

Convert a simple recursive alg to a dynamic programming solution	

Simulate any of the algs we’ve studied	

Give an alg for problem X, maybe a variant of one we’ve studied, or
prove it’s in NP	

Understand parts of correctness proof for an algorithm or reduction	

Implications of NP-completeness	

16	

417 Final	

17	

Good Luck!	

18	

