CSE 4I7 Introduction to Algorithms

NP-Completeness
(Chapter 8)

What can we feasibly compute?

Focus so far has been to give good algorithms for specific problems (and general techniques that help do this).

Now shifting focus to problems where we think this is impossible. Sadly, there are many...

History

A Brief History of Ideas

From Classical Greece, if not earlier, "logical thought" held to be a somewhat mystical ability
Mid I800's: Boolean Algebra and foundations of mathematical logic created possible "mechanical" underpinnings
1900: David Hilbert's famous speech outlines program: mechanize all of mathematics?
http://mathworld.wolfram.com/HilbertsProblems.html
1930's: Gödel, Church, Turing, et al. prove it's impossible

More History

1930/40's

What is (is not) computable
1960/70's
What is (is not) feasibly computable
Goal - a (largely) technology-independent theory of time required by algorithms
Key modeling assumptions/approximations
Asymptotic (Big-O), worst case is revealing
Polynomial, exponential time - qualitatively different

Polynomial Time

The class P

(defined later)

Definition: $\mathrm{P}=$ the set of (decision) problems solvable by computers in polynomial time, i.e.,

$$
T(n)=O\left(n^{k}\right) \text { for some fixed } k \text { (indp of input). }
$$

These problems are sometimes called tractable problems.

Examples: sorting, shortest path, MST, connectivity, RNA folding \& other dyn. prog., flows \& matching

- i.e.: most of this qtr
(exceptions: Change-Making/Stamps, Knapsack, TSP)

Why "Polynomial"?

Point is not that n^{2000} is a nice time bound, or that the differences among n and $2 n$ and n^{2} are negligible.

Rather, simple theoretical tools may not easily capture such differences, whereas exponentials are qualitatively different from polynomials and may be amenable to theoretical analysis.
"My problem is in P " is a starting point for a more detailed analysis
"My problem is not in P" may suggest that you need to shift to a more tractable variant

Polynomial vs

Exponential Growth

Another view of Poly vs Exp

Next year's computer will be $2 x$ faster. If I can solve problem of size n_{0} today, how large a problem can I solve in the same time next year?

Complexity	Increase	E.g. $T=10^{12}$	
$O(n)$	$n_{0} \rightarrow 2 n_{0}$	10^{12}	2×10^{12}
$O\left(n^{2}\right)$	$n_{0} \rightarrow \sqrt{ } 2 n_{0}$	10^{6}	1.4×10^{6}
$O\left(n^{3}\right)$	$n_{0} \rightarrow 3 \sqrt{2} n_{0}$	10^{4}	1.25×10^{4}
$2^{n / 10}$	$n_{0} \rightarrow n_{0}+10$	400	410
2^{n}	$n_{0} \rightarrow n_{0}+1$	40	41

Decision vs Search Problems

The Clique Problem

Given: a graph $G=(V, E)$ and an integer k Question: is there a subset U of V with $|\mathrm{U}| \geq k$ such that every pair of vertices in U is joined by an edge.

E.g., if nodes are web pages, and edges join "similar" pages, then pages forming a clique are likely to be about the same topic

Decision Problems

Computational complexity usually analyzed using decision problems
Answer is just I or 0 (yes or no).
Why?
Much simpler to deal with
Deciding whether G has a k-clique, is certainly no harder than finding a k -clique in G , so a lower bound on deciding is also a lower bound on finding
Less important, but if you have a good decider, you can often use it to get a good finder. (Ex.: does G still have a k-clique after I remove this vertex?)

Some Convenient Technicalities

"Problem" - the general case Ex: The Clique Problem: Given a graph G and an integer k, does G contain a k-clique?
"Problem Instance" - the specific cases
Ex: Does
 contain a 4-clique? (no) Ex: Does contain a 3-clique? (yes)

Some Convenient Technicalities

Three kinds of problem:
Search: Find a k-clique in G
Decision: Is there a k-clique in G
Verification: Is this a k-clique in G

Problems as Sets of "Yes" Instances
Ex: CLIQUE $=\{(\mathrm{G}, \mathrm{k}) \mid \mathrm{G}$ contains a k -clique $\}$

But we'll sometimes be a little sloppy and use CLIQUE to mean the associated search problem

Beyond P

Algebraic Satisfiability

Given positive integers $\mathrm{a}, \mathrm{b}, \mathrm{c}$
Question I: does there exist a positive integer x such that $\mathrm{ax}=\mathrm{c}$?

Question 2: does there exist a positive integer x such that $\mathrm{ax}^{2}+\mathrm{bx}=\mathrm{c}$?

Question 3: do there exist positive integers x and y such that $a x^{2}+b y=c$?

Boolean Satisfiability

Boolean variables x_{1}, \ldots, x_{n} taking values in $\{0, \mathrm{l}\}$. $0=$ false, $\mathrm{I}=$ true
Literals

$$
x_{i} \text { or } \neg x_{i} \text { for } i=I, \ldots, n
$$

Clause
a logical OR of one or more literals
e.g. $\left(x_{1} \vee \neg x_{3} \vee x_{7} \vee x_{12}\right)$

CNF formula ("conjunctive normal form")
a logical AND of a bunch of clauses

Boolean Satisfiability

CNF formula example

$$
\left(x_{1} \vee \neg x_{3} \vee x_{7}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee x_{5} \vee \neg x_{7}\right)
$$

If there is some assignment of 0 's and I's to the variables that makes it true then we say the formula is satisfiable
the one above is, the following isn't

$$
x_{1} \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{3}
$$

Satisfiability: Given a CNF formula F, is it satisfiable?

Satisfiable?

$$
\begin{aligned}
& (x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z) \wedge \\
& (x \vee \neg y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge \\
& (\neg x \vee \neg y \vee \neg z) \wedge(x \vee y \vee \vee) \wedge \\
& (x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
\end{aligned}
$$

$$
\begin{aligned}
& (x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z) \wedge \\
& (x \vee \neg y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge \\
& (\neg x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee z) \wedge \\
& (x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
\end{aligned}
$$

SAT and 3SAT

Satisfiability: A Boolean formula in conjunctive normal form (CNF) is satisfiable if there exists an assignment of 0's and I's to its variables such that the value of the expression is I.
Example:

$$
S=(x \vee y \vee \neg z) \wedge(\neg x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)
$$

Example above is satisfiable. (E.g., set $x=I, y=I$ and $z=0$.)
SAT = the set of satisfiable CNF formulas
3 SAT $=\ldots$ having at most 3 literals per clause

More Problems

Independent-Set:
Pairs $\langle\mathrm{G}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a graph and k is an integer, for which there is a subset U of V with $|\mathrm{U}| \geq \mathrm{k}$ such that no pair of vertices in U is
 joined by an edge.
Clique:
Pairs $\langle\mathrm{G}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a graph and k is an integer k, for which there is a subset U of V with $|\mathrm{U}| \geq k$ such that every pair of vertices in U
 is joined by an edge.

More Problems

Euler Tour:

Graphs $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ for which there is a cycle traversing each edge once.

Hamilton Tour:

Graphs $G=(V, E)$ for which there is a simple cycle of length |V|, i.e., traversing each vertex once.
TSP:
Pairs $\langle\mathrm{G}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$ is a a weighted graph and k is an integer, such that there is a Hamilton tour of G with total weight $\leq k$.

More Problems

Short Path:

4-tuples $\langle\mathrm{G}, \mathrm{s}, \mathrm{t}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a digraph with vertices s, t, and an integer k, for which there is a path from s to t of length $\leq k$

Long Path:
4-tuples $\langle\mathrm{G}, \mathrm{s}, \mathrm{t}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a digraph with vertices s, t, and an integer k, for which there is an acyclic path from s to t of length $\geq k$

More Problems

3-Coloring:
Graphs $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ for which there is an assignment of at most 3 colors to the vertices in G such that no two adjacent vertices have the same color.

Example:

Beyond P?

There are many natural, practical problems for which we don't know any polynomial-time algorithms:

e.g. CLIQUE:

Given an undirected graph G and an integer k, does G contain a k-clique?
e.g. quadratic Diophantine equations:

Given $a, b, c \in N, \exists x, y \in N$ s.t. $a x^{2}+b y=c$?
e.g., most of others just mentioned (excl: shortpath, Euler)

Lack of imagination or intrinsic barrier?

NP

Roadmap

Not Every problem is easy (in P)

Exponential time is bad

Worse things happen, too

There is a very commonly-seen class of problems, called NP, that appear to require exponential time (but unproven)

Review: Some Problems

Quadratic Diophantine Equations Clique
Independent Set
Euler Tour
Hamilton Tour
TSP
3-Coloring
Partition
Satisfiability
Short Paths
Long Paths

All of the form: Given input X, is there a Y
with property Z ?
Furthermore, if I had a
purported Y , I could quickly test whether it had property Z

Common property of these problems: Discrete Exponential Search Loosely-find a needle in a haystack

"Answer" to a decision problem is literally just yes/no, but there's always a somewhat more elaborate "solution" (aka "hint" or "certificate"; what the search version would report) that transparently ${ }^{\ddagger}$ justifies each "yes" instance (and only those) - but it's buried in an exponentially large search space of potential solutions.
\ddagger Transparently $=$ verifiable in polynomial time

Defining NP: The Idea

NP consists of all decision problems where
You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint

And
__ one among exponentially many;
"know it when you see it"
No hint can fool your polynomial time verifier into saying YES for a NO instance

Defining NP: formally

A decision problem L is in NP iff there is a polynomial time procedure $\mathrm{v}(-,-)$, (the "verifier") and an integer k such that for every $\mathrm{x} \in \mathrm{L}$ there is a "hint" h with $|\mathrm{h}| \leq|\mathrm{x}|^{k}$ such that $\mathrm{v}(\mathrm{x}, \mathrm{h})=\mathrm{YES}$ and
for every $\mathrm{x} \notin \mathrm{L}$ there is no hint h with $|\mathrm{h}| \leq|\mathrm{x}|^{k}$ such that $\mathrm{v}(\mathrm{x}, \mathrm{h})=\mathrm{YES}$ ("Hints," sometimes called "certificates," or "witnesses", are just strings. Think of them as exactly what the search version would output.)

Note: a problem is "in NP" if it can be posed as an exponential search problem, even if there may be other ways to solve it.

Example: Clique

"Is there a k-clique in this graph?" any subset of k vertices might be a clique
 there are many such subsets, but I only need to find one if I knew where it was, I could describe it succinctly, e.g. "look at vertices $2,3,17,42, . . . "$,
l'd know one if I saw one: "yes, there are edges between 2 \& 3, 2 \& I7,... so it's a k-clique"
this can be quickly checked
And if there is no k-clique, I wouldn't be fooled by a statement like "look at vertices $2,3,17,42, \ldots$."

More Formally: CLIQUE is in NP

procedure $\mathrm{v}(\mathrm{x}, \mathrm{h})$
if
x is a well-formed representation of a graph
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k,
and
h is a well-formed representation of a k-vertex subset U of V,
and
U is a clique in G ,
then output "YES"
else output "'m unconvinced" $<$

Important note: this answer does NOT mean $x \notin$ CLIQUE; just means this h isn't a k-clique (but some other might be).

Is it correct?

For every $\mathrm{x}=(\mathrm{G}, \mathrm{k})$ such that G contains a k -clique, there is a hint h that will cause $v(x, h)$ to say YES, namely $h=a$ list of the vertices in such a k-clique and

No hint can fool v into saying yes if either x isn't well-formed (the uninteresting case) or if $x=(G, k)$ but G does not have any cliques of size k (the interesting case)
And $|\mathrm{h}|<|\mathrm{x}|$ and $\mathrm{v}(\mathrm{x}, \mathrm{h})$ takes time $\sim(|\mathrm{x}|+|\mathrm{h}|)^{2}$

Example: SAT

"Is there a satisfying assignment for this Boolean formula?"
any assignment might work
there are lots of them
I only need one
if I had one I could describe it succinctly, e.g., " $x_{1}=T, x_{2}=F, \ldots, x_{n}=T$ "
I'd know one if I saw one: "yes, plugging that in, I see formula $=$ T..." and this can be quickly checked
And if the formula is unsatisfiable, I wouldn't be fooled by, " $x_{1}=T$, $x_{2}=F, \ldots, x_{n}=F$ '

More Formally: SAT \in NP

Hint: the satisfying assignment A
Verifier: $v(C, A)=\operatorname{syntax}(C, A) \& \& \operatorname{satisfies}(C, A)$ Syntax: True iff C is a well-formed CNF formula \& A is a truth-assignment to its variables
Satisfies: plug A into C; check that it evaluates to True
Correctness:
If C is satisfiable, it has some satisfying assignment A , and we'll recognize it
If C is unsatisfiable, it doesn't, and we won't be fooled
Analysis: $|A|<|C|$, and time for $v(C, A) \sim$ linear in $|C|+|A|_{37}$

IndpSet is in NP

procedure $\mathrm{v}(\mathrm{x}, \mathrm{h})$
if
x is a well-formed representation of a graph
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k ,
and
h is a well-formed representation of a k-vertex subset U of V,
and
U is an Indp Set in G, then output "YES"
else output "l'm unconvinced" $<$

Important note: this answer does NOT mean $x \notin \operatorname{IndpSet}$; just means this h isn't a k-IndpSet (but some other might be).

Is it correct?

For every $\mathrm{x}=(\mathrm{G}, \mathrm{k})$ such that G contains a k IndpSet, there is a hint h that will cause $v(x, h)$ to say YES, namely $h=a$ list of the vertices in such a set and

No hint can fool v into saying yes if either x isn't well-formed (the uninteresting case) or if $x=(G, k)$ but G does not have any Indp Set of size k (the interesting case)
And $|\mathrm{h}|<|\mathrm{x}|$ and $\mathrm{v}(\mathrm{x}, \mathrm{h})$ takes time $\sim(|\mathrm{x}|+|\mathrm{h}|)^{2}$

Example: Quad Diophantine Eqns

"Is there an integer solution to this equation?" any pair of integers $x \& y$ might be a solution there are lots of potential pairs
I only need to find one such pair if I knew a solution, I could easily describe it, e.g. "try $x=42$ and $y=32 I "$ [A slight subtlety here: some algebra will show that if there's any int solution, there's one involving ints with only polynomially many digits...] l'd know one if I saw one: "yes, plugging in 42 for $x \& 321$ for yl see ..."
And wouldn't be fooled by $(42,32 I)$ if there's no solution

Short Path

"Is there a short path (<k) from s to t in this graph?"
Any path might work
There are lots of them
I only need one
If I knew one I could describe it succinctly, e.g., "go from s to node 2 , then node 42 , then ... "
l'd know one if I saw one: "yes, I see there's an edge from s to 2 and from 2 to $42 \ldots$ and the total length is $<k$ " And if there isn't a short path, I wouldn't be fooled by, e.g., "go from s to node 2, then node 42 , then ... "

Long Path

"Is there a long (acyclic) path (>k) from s to t in this graph?" Any path might work
There are lots of them
I only need one
If I knew one I could describe it succinctly, e.g., "go from s to node 2 , then node 42 , then ... "
I'd know one if I saw one: "yes, I see there's an edge from s to 2 and from 2 to $42 \ldots$, no dups, \& total length is $>k$ "
And if there isn't a long path, I wouldn't be fooled by, e.g., "go from s to node 2, then node 42, then ... "

Keys to showing that a problem is in NP

What's the output? (must be YES/NO)
What's the input? Which are YES?
For every given YES input, is there a hint that would help, i.e. allow verification in polynomial time? Is it polynomial length? OK if some inputs need no hint
For any given NO input, is there a hint that would trick you?

Two Final Points About "Hints"

I. Hints/verifiers aren't unique. The "... there is a ..." framework often suggests their form, but many possibilities

Abstract

"is there a clique" could be verified from its vertices, or its edges, or all but 3 of each, or all non-vertices, or... Details of the hint string and the verifier and its time bound shift, but same bottom line

2. In NP doesn't prove its hard
"Short Path" or "Small Spanning Tree" or "Large Flow" can be formulated as "...there is a...," but, due to very special structure of these problems, we can quickly find the solution even without a hint. The mystery is whether that's possible for the other problems, too.

Contrast: problems not in NP (probably)

Rather than "there is a..." maybe it's
"no..." or "for all..." or "the smallest/largest..."
E.g.

UNSAT: "no assignment satisfies formula," or
"for all assignments, formula is false"
Or
NOCLIQUE: "every subset of k vertices is not a k-clique"
MAXCLIQUE: "the largest clique has size k "
It seems unlikely that a single, short hint is sufficiently informative to allow poly time verification of properties like these (but this is also an important open problem).

Another Contrast: Mostly Long Paths

"Are the majority of paths from s to t long (>k)?"
Any patb might work

No, this is a collective property of the set of all paths in the graph, and no one path
overrules the rest
And fthere isn't a long pat', I wouldn't be fooled...

Problems in P can also be verified in polynomial-time

Short Path: Given a graph G with edge lengths, is there a path from s to t of length $\leq k$?
Verify: Given a purported path from s to t , is it a path, is its length \leq k?

Small Spanning Tree: Given a weighted undirected graph G, is there a spanning tree of weight $\leq k$?
Verify: Given a purported spanning tree, is it a spanning tree, is its weight $\leq k$?
(But the hints aren't really needed in these cases...)

Relating P to NP

Complexity Classes

NP = Polynomial-time verifiable

P = Polynomial-time solvable
$P \subseteq N P$: "verifier" is just the P-time alg; ignore "hint"

Solving NP problems without hints

The most obvious algorithm for most of these problems is brute force:
try all possible hints; check each one to see if it works. Exponential time:
2^{n} truth assignments for n variables
n ! possible TSP tours of n vertices
$\binom{n}{k}$ possible k element subsets of n vertices etc.
...and to date, every alg, even much less-obvious ones, are slow, too

P vs NP vs Exponential Time

Theorem: Every problem in NP can be solved (deterministically) in exponential time

Proof: "hints" are only n^{k} long; try all $2^{n^{k}}$ possibilities, say, by backtracking. If any succeed, answer YES; if all fail, answer NO.

P and NP

Every problem in P is in NP one doesn't even need a hint for problems in P so just ignore any hint you are given

Every problem in NP is in exponential time
l.e., $P \subseteq N P \subseteq \operatorname{Exp}$

We know $P \neq$ Exp, so either $P \neq N P$, or $N P \neq \operatorname{Exp}$ (most
 likely both)

Does $P=N P$?

This is the big open question!
To show that $\mathrm{P}=\mathrm{NP}$, we have to show that every problem that belongs to NP can be solved by a polynomial time deterministic algorithm.
Would be very cool, but no one has shown this yet. (And it seems unlikely to be true.)
(Also seems daunting: there are infinitely many problems in NP; do we have to pick them off one at a time...?)

More History - As of 1970

Many of the above problems had been studied for decades All had real, practical applications
None had poly time algorithms; exponential was best known

But, it turns out they all have a very deep similarity under the skin

Some Problem Pairs

Euler Tour	Hamilton Tour
2-SAT	3-SAT
2-Coloring	3-Coloring
Min Cut	Max Cut
Shortest Path	Longest Path

P vs NP

Theory
P = NP ?
Open Problem!
I bet against it

Practice

Many interesting, useful, natural, well-studied problems known to be NP-complete
With rare exceptions, no one routinely finds exact solutions to large, arbitrary instances

P vs NP: Summary so far

P = "poly time solvable"
NP = "poly time verifiable" (nondeterministic poly time solvable)
Defined only for decision problems, but fundamentally about search: can cast many problems as searching for a poly size, poly time verifiable "solution" in a $2^{\text {poly }}$ size "search space."

Examples:

is there a big clique? Space = all big subsets of vertices; solution = one subset; verify = check all edges
is there a satisfying assignment? Space = all assignments; solution $=$ one asgt; verify $=$ eval formula
Sometimes we can do that quickly (is there a small spanning tree?); P = NP would mean we could always do it quickly.

NP: Yet to come

NP-Completeness: the "hardest" problems in NP.
Surprisingly, most known problems in NP are equivalent, in a strong sense, despite great superficial differences.
Reductions: key to showing those facts.

Reduction

Reductions: a useful tool

Definition: To "reduce A to B " means to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select (n/2) ${ }^{\text {nd }}$
Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat
Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.

P-time Reductions: What, Why

Definition: To reduce A to B means to solve A, given a subroutine solving B.

Fast algorithm for B implies fast algorithm for A (nearly as fast; takes some time to set up call, etc.)

If every algorithm for A is slow, then no algorithm for B can be fast.

$$
\text { "complexity of A" } \leq \text { "complexity of B" + "complexity of reduction" }
$$

Using an Algorithm for B to Solve A

"If $A \leq_{p} B$, and we can solve B in polynomial time, then we can solve A in polynomial time also."

Key issue: Can we (quickly) turn an A-instance x into one (or more) Binstance(s) $f(x)$ so that answer (s) to " $f(x) \in B$ " help us decide $x \in A$ "?

SAT and Independent Set

Another NP problem: Independent Set

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset I of V of size $\geq k$ such that no edge in E has both end points in I.

Example: Independent Set of size ≥ 2.

In NP? Exercise

$3 S A T \leq_{p} \operatorname{IndpSet}$
what indp sets?

how large?
how many?

3SAT \leq_{p} IndpSet

3SAT $\leq_{p} \operatorname{IndpSet}$

what indp sets? how large? how many?

3SAT $\leq_{p} \operatorname{IndpSet}$

$3 S A T \leq_{p} \operatorname{IndpSet}$

IndpSet Instance:

$$
\begin{aligned}
& -\mathrm{k}=\mathrm{q} \\
& -\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
& -\mathrm{V}=\{[\mathrm{i}, \mathrm{j}] \mid 1 \leq \mathrm{i} \leq \mathrm{q}, 1 \leq \mathrm{j} \leq 3\} \\
& -\mathrm{E}=\left\{([\mathrm{i}, \mathrm{j}],[\mathrm{k}, \mathrm{I}]) \mid \mathrm{i}=\mathrm{k} \text { or } \mathrm{y}_{\mathrm{ij}}=\neg \mathrm{y}_{\mathrm{kl}}\right\} \\
& \hline 70
\end{aligned}
$$

3SAT $\leq_{p} \operatorname{IndpSet}$

3SAT $\leq_{p} \operatorname{IndpSet}$

Correctness of " 3 SAT \leq_{p} IndpSet"

Summary of reduction function f: Given formula, make graph G with one group per clause, one node per literal. Connect each to all nodes in same group; connect all complementary literal pairs ($\mathrm{x}, \neg \mathrm{x}$). Output graph G plus integer $\mathrm{k}=$ number of clauses. Note: f does not know whether formula is satisfiable or not; does not know if G has k-IndpSet; does not try to find satisfying assignment or set.
Correctness:

- Show f poly time computable: A key point is that graph size is polynomial in formula size; mapping basically straightforward.
- Show c in 3-SAT iff $f(\mathrm{c})=(\mathrm{G}, \mathrm{k})$ in IndpSet:
(\Rightarrow) Given an assignment satisfying c, pick one true literal per clause. Add corresponding node of each triangle to set. Show it is an IndpSet: I per triangle never conflicts w/ another in same triangle; only true literals (but perhaps not all true literals) picked, so not both ends of any ($\mathrm{x}, \neg \mathrm{x}$) edge.
(\Leftarrow) Given a k-Independent Set in G, selected labels define a valid (perhaps partial) truth assignment since no ($\mathrm{x}, \neg \mathrm{x}$) pair picked. It satisfies c since there is one selected node in each clause triangle (else some other clause triangle has > I selected node, hence not an independent set.)

Utility of " 3 SAT \leq_{p} IndpSet"

Suppose we had a fast algorithm for IndpSet, then we could get a fast algorithm for 3SAT:
Given 3-CNF formula w, build Independent
 Set instance $y=f(w)$ as above, run the fast IS alg on y; say "YES, w is satisfiable" iff IS alg says "YES, y has a Independent Set of the given size"
On the other hand, suppose no fast alg is possible for 3SAT, then we know none is possible for Independent Set either.

" 3 SAT \leq_{p} IndpSet" Retrospective

Previous slides: two suppositions
Somewhat clumsy to have to state things that way.
Alternative: abstract out the key elements, give it a name ("polynomial time mapping reduction"), then properties like the above always hold.

More Reductions

SAT to Subset Sum (Knapsack)

Subset-Sum, AKA Knapsack

KNAP $=\left\{\left(w_{1}, w_{2}, \ldots, w_{n}, C\right) \mid\right.$ a subset of the w_{i} sums to $\left.C\right\}$
$w_{i}^{\prime} s$ and C encoded in radix $r \geq 2$. (Decimal used in following example.)

Theorem: 3-SAT \leq_{p} KNAP
Pf: given formula with p variables \& q clauses, build KNAP instance with $2(p+q) w_{i}$'s, each with $(p+q)$ decimal digits. For the $2 p$ "literal" weights, H.O. p digits mark which variable; L.O. q digits show which clauses contain it. Two "slack" weights per clause mark that clause. See examples below.

3-SAT \leq_{p} KNAP

Formula: (x)

		Variables	

3-SAT \leq_{p} KNAP

Formula: $(x \quad) \wedge(\neg x \quad)$

3-SAT \leq_{p} KNAP

Formula: $(x \vee y \vee z)$

3-SAT \leq_{p} KNAP

Formula: $(x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z)$

	Variables			Clauses		
	x	y	z	($\mathrm{x} \vee \mathrm{y} \vee \mathrm{z}$)	$(\neg x \vee y \vee \neg z)$	$(\neg x \vee \neg y \vee z)$
$\mathrm{w}_{1}(\mathrm{x})$	I	0	0	I	0	0
$\frac{n}{\square N}$	1	0	0	0	1	1
$\stackrel{\text { ¢ }}{\text { ¢ }}$		1	0	1	1	0
$\mathrm{w}_{4}(\neg \mathrm{y})$		1	0	0	0	1
w_{5} (z)			1	1	0	1
$\mathrm{w}_{6}(\neg \mathrm{z})$			1	0	1	0
$\mathrm{w}_{7}\left(s_{11}\right)$				1	0	0
$\mathrm{w}_{8}\left(s_{12}\right)$				1	0	0
$\stackrel{\sim}{u} \mathrm{w}_{9}\left(s_{21}\right)$					1	0
$\stackrel{\sim}{\sim} \mathrm{w}_{10}\left(s_{22}\right)$					1	0
$w_{11}\left(s_{31}\right)$						1
$\mathrm{w}_{12}\left(s_{32}\right)$						1
C	1	I	1	3	3	3

Correctness

Poly time for reduction is routine; details omitted. Again note that it does not look at satisfying assignment(s), if any, nor at subset sums, but the problem instance it builds captures one via the other...
If formula is satisfiable, select the literal weights corresponding to the true literals in a satisfying assignment. If that assignment satisfies k literals in a clause, also select $(3-k)$ of the "slack" weights for that clause. Total $=\mathrm{C}$.
Conversely, suppose KNAP instance has a solution. Columns are decoupled since ≤ 5 one's per column, so no "carries" in sum (recall - weights are decimal). Since H.O. p digits of C are I, exactly one of each pair of literal weights included in the subset, so it defines a valid assignment. Since L.O. q digits of C are 3 , but at most 2 "slack" weights contribute to each, at least one of the selected literal weights must be I in that clause, hence the assignment satisfies the formula.

Polynomial Time Reduction

Two definitions of " $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$ "

Book uses general definition: "could solve A in poly time, if I had a poly time subroutine for B."

Examples on previous slides are special case where you only get to call the subroutine once, and must report its answer.

This special case is used in $\sim 98 \%$ of all reductions
Largely irrelevant for this course, but if you seem to need I ${ }^{\text {st }}$ defn, e.g. on HW, fine, but there's perhaps a simpler way...

Using an Algorithm for B to Solve A

"If $A \leq_{p} B$, and we can solve B in polynomial time, then we can solve A in polynomial time also."

Key issue: Can we (quickly) turn an A-instance x into one (or more) Binstance(s) $f(x)$ so that answer(s) to " $f(x) \in B$ " help us decide $x \in A$ "?

Using an Algorithm for B to Solve A

Algorithm to solve A

"If $A \leq_{p} B$, and we can solve B in polynomial time, then we can solve A in polynomial time also."

Ex: suppose f takes $O\left(n^{3}\right)$ and algorithm for B takes $O\left(n^{2}\right)$.
How long does the above algorithm for A take?

Polynomial-Time Reductions

Definition: Let A and B be two decision problems.
We say that A is polynomially (mapping) reducible to $B\left(A \leq_{p} B\right)$ if there exists a polynomial-time algorithm f that converts each instance x of problem A to an instance $f(x)$ of B such that:
x is a YES instance of A iff $f(x)$ is a YES instance of B

$$
x \in A \Leftrightarrow f(x) \in B
$$

Polynomial-Time Reductions (cont.)

Defn: $A \leq p$ " A is polynomial-time reducible to B," iff there is a polynomial-time computable function f such that: $x \in A \Leftrightarrow f(x) \in B$
"complexity of A"
(I) $A \leq_{p} B$ and $B \in P \Rightarrow A \in P$
(2) $A \leq_{p} B$ and $A \notin P \Rightarrow B \notin P$
(3) $A \leq_{p} B$ and $B \leq_{p} C \Rightarrow A \leq_{p} C$ (transitivity)

More Reductions

SAT to Coloring

NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).
Output: True iff there is an assignment of at most 3 colors to the vertices in G such that no two adjacent vertices have the same color.

Example:

In NP? Exercise

A 3-Coloring Gadget:

In what ways can this be 3-colored?

A 3-Coloring Gadget: "Sort of an OR gate"

if output is T, some input must be T

3SAT \leq_{p} 3Color

> 3Color Instance:
> $\quad-G=(V, E)$
> $-6 q+2 n+3$ vertices
> $-13 q+3 n+3$ edges
> $-($ See Example for details $)$

3SAT \leq p 3Color Example

Correctness of "3SAT $\leq_{p} 3$ Coloring"

Summary of reduction function f :
Given formula, make G with T-F-N triangle, I pair of literal nodes per variable, 2 "or" gadgets per clause, connected as in example.
Note: again, f does not know or construct satisfying assignment or coloring.
Correctness:

- Show f poly time computable: A key point is that graph size is polynomial in formula size; graph looks messy, but pattern is basically straightforward.
- Show c in 3-SAT iff $\mathrm{f}(\mathrm{c})$ is 3-colorable:
$(\Rightarrow$) Given an assignment satisfying c, color literals T/F as per assignment; can color "or" gadgets so output nodes are T since each clause is satisfied. (\Leftarrow) Given a 3 -coloring of $f(c)$, name colors T-N-F as in example. All square nodes are T or F (since all adjacent to N). Each variable pair ($\mathrm{x}_{\mathrm{i}}, \neg \mathrm{x}_{\mathrm{i}}$) must have complementary labels since they're adjacent. Define assignment based on colors of x_{i} 's. Clause "output" nodes must be colored T since they're adjacent to both $\mathrm{N} \& \mathrm{~F}$. By fact noted earlier, output can be T only if at least one input is T , hence it is a satisfying assignment.

NP-completeness

NP-Completeness

Definition: Problem B is

 NP-complete if:(I) B belongs to NP, and
(2) every problem in NP is polynomially reducible to B .

Intuitively, these are the "hardest problems" in NP
They are also all deeply relatedsolving any solves them all!

97

NP-completeness (cont.)

Thousands of important problems have been shown to be NP-complete.

The general belief is that there is no efficient algorithm for any NP-complete problem, but no proof of that belief is known.

Examples: SAT, clique, vertex cover, IndpSet, Ham tour, TSP, bin packing... Basically, everything we've seen that's in NP but not known to be in P

Alt way to prove NP-completeness

Lemma: Problem B is NP-complete iff:
(I) B belongs to NP, and
(2') A is polynomial-time reducible to B , for some problem A that is NP-complete.

That is, to show NP-completeness of a new problem B in NP, it suffices to show that SAT or any other NP-complete problem is polynomial-time reducible to B.

Ex: IndpSet is NP-complete

3-SAT is NP-complete (S. Cook; see below)
3 -SAT \leq_{p} IndpSet IndpSet is in NP
Therefore IndpSet is also NP-complete

So, poly-time algorithm for IndpSet would give polytime algs for everything in NP

Ditto for KNAP, 3COLOR, ...

Cook's Theorem

SAT is NP-Complete

Cook's Theorem

Theorem: Every problem in NP is reducible to SAT
Proof Sketch: SAT assignment $=$ hint; formula $=$ verifier.
Generic "NP" problem: is there a poly size "hint," verifiable in poly time
Encode "hint" using Boolean variables. SAT mimics "is there a hint" via "is there an assignment". The "verifier" runs on a digital computer, and digital computers just do Boolean logic. "SAT" can mimic that, too, hence can verify that the assignment actually encodes a hint the verifier would accept.
"SAT": is there an assignment (the hint) satisfying the formula (the verifier)

Pf uses generic NP problems, but a few specific examples will give the flavor

3-Coloring \leq_{p} SAT

Given $G=(V, E)$
$\forall i$ in V, variables r_{i}, g_{i}, b_{i} encode color of i
$\leftarrow \stackrel{\stackrel{\rightharpoonup}{ }}{\text { E }}$

$$
\begin{aligned}
& \wedge_{i \in \vee}\left[\left(r_{i} \vee g_{i} \vee b_{i}\right) \wedge\right. \\
& \left.\quad\left(\neg r_{i} \vee \neg g_{i}\right) \wedge\left(\neg g_{i} \vee \neg b_{i}\right) \wedge\left(\neg b_{i} \vee \neg r_{i}\right)\right] \wedge \\
& \wedge\left(i_{j}\right) \in E\left[\left(\neg r_{i} \vee \neg r_{j}\right) \wedge\left(\neg g_{i} \vee \neg g_{j}\right) \wedge\left(\neg b_{i} \vee \neg b_{j}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Equivalently: } \\
& \left(\neg\left(\mathrm{r}_{\mathrm{i}} \wedge \mathrm{~g}_{\mathrm{i}}\right)\right) \wedge\left(\neg\left(\mathrm{g}_{\mathrm{i}} \wedge \mathrm{~b}_{\mathrm{i}}\right)\right) \wedge\left(\neg\left(\mathrm{b}_{\mathrm{i}} \wedge \mathrm{r}_{\mathrm{i}}\right)\right) \wedge \\
& \wedge_{(\mathrm{i}, \mathrm{j}) \in \mathrm{E}}\left[\left(\mathrm{r}_{\mathrm{i}} \Rightarrow \neg \mathrm{r}_{\mathrm{j}}\right) \wedge\left(\mathrm{g}_{\mathrm{i}} \Rightarrow \neg \mathrm{~g}_{\mathrm{j}}\right) \wedge\left(\mathrm{b}_{\mathrm{i}} \Rightarrow \neg \mathrm{~b}_{\mathrm{j}}\right)\right]
\end{aligned}
$$

Independent Set \leq_{p} SAT

Given $G=(V, E)$ and k
$\forall \mathrm{i}$ in V , variable x_{i} encodes inclusion of i in IS
$\leftarrow \stackrel{\stackrel{\rightharpoonup}{ }}{\text { E }}$

every edge has one end or other not in IS (no edge connects 2 in IS)
possible in 3 CNF, but technically messy, so details omitted; basically, count I's

Coping with NP-hardness

Coping with NP-Completeness

Is your real problem a special subcase?
E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto 3- vs 2coloring
E.g. only need planar-/interval-/degree 3 graphs, trees, ...?

Guaranteed approximation good enough?
E.g. Euclidean TSP within I. 5 * Opt in poly time

Fast enough in practice (esp. if n is small),
E.g. clever exhaustive search like dynamic programming, backtrack, branch \& bound, pruning
Heuristics - usually a good approx and/or fast

NP-complete problem: TSP

Input: An undirected graph
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with integer edge weights, and an integer b.

Output: YES iff there is a simple cycle in G passing through all vertices (once),

Example:

$$
b=34
$$

with total cost $\leq \mathrm{b}$.

TSP - Nearest Neighbor Heuristic

Recall NN Heuristic-go to nearest unvisited vertex

Fact: $N N$ tour can be about $(\log n) \times$ opt, i.e.

$$
\lim _{n \rightarrow \infty} \frac{N N}{O P T} \rightarrow \infty
$$

(above example is not that bad)

2x Approximation to EuclideanTSP

A TSP tour visits all vertices, so contains a spanning tree, so cost of min spanning tree < TSP cost.

Find MST

Find "DFS" Tour

Shortcut

TSP \leq shortcut $<$ DFST $=2 *$ MST $<2 *$ TSP

P / NP Summary

P

Many important problems are in P: solvable in deterministic polynomial time

Details are the fodder of algorithms courses. We've seen a few examples here, plus many other examples in other courses
Few problems not in P are routinely solved;
For those that are, practice is usually restricted to small instances, or we're forced to settle for approximate, suboptimal, or heuristic "solutions"
A major goal of complexity theory is to delineate the boundaries of what we can feasibly solve

NP

The tip-of-the-iceberg in terms of problems conjectured not to be in P, but a very important tip, because
a) they're very commonly encountered, probably because
b) they arise naturally from basic "search" and "optimization" questions.

Definition: poly time verifiable;
"guess and check", "is there a..." - are also useful views

NP-completeness

Defn \& Properties of \leq_{p}

A is NP-complete: in NP \& everything in NP reducible to A
"the hardest problems in NP"
"All alike under the skin"
Most known natural problems in NP are complete \#I: 3CNF-SAT

Many others: Clique, IndpSet, 3Color, KNAP, HamPath, TSP,

Summary

Big-O - good
P - good
Exp - bad
Exp, but hints help? NP
NP-hard, NP-complete - bad (I bet)
To show NP-complete - reductions
NP-complete = hopeless? - no, but you
need to lower your expectations:
heuristics, approximations and/or small instances.

Common Errors in NP-completeness Proofs

Backwards reductions
Bipartiteness \leq_{p} SAT is true, but not so useful. ($\mathrm{XYZ} \leq_{\mathrm{p}}$ SAT shows XYZ in NP, doesn't show it's hard.)
Sloooow Reductions
"Find a satisfying assignment, then output..."

Half Reductions

E.g., delete dashed edges in 3Color reduction. It's still true that "c satisfiable $\Rightarrow G$ is 3 colorable", but 3-colorings don't necessarily give satisfying- (or valid) assignments.
E.g., add or delete slacks in KNAP: similar troubles

"I can't find an efficient algorithm, but neither can all these famous people."
[Garey \& Johnson, I979]

