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What can we feasibly compute?	


Focus so far has been to give good algorithms for specific 
problems (and general techniques that help do this).	


	


Now shifting focus to problems where we think this is 
impossible.  Sadly, there are many…	
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History 
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A Brief History of Ideas	


From Classical Greece, if not earlier, “logical 
thought” held to be a somewhat mystical ability	


Mid 1800’s: Boolean Algebra and foundations of 
mathematical logic created possible “mechanical” 
underpinnings	


1900: David Hilbert’s famous speech outlines 
program: mechanize all of mathematics? 
http://mathworld.wolfram.com/HilbertsProblems.html	


1930’s: Gödel, Church, Turing, et al. prove it’s 
impossible	
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More History	


1930/40’s 	

What is (is not) computable	


1960/70’s 	

What is (is not) feasibly computable	


Goal – a (largely) technology-independent theory of time 
required by algorithms	


Key modeling assumptions/approximations 	

Asymptotic (Big-O), worst case is revealing	


Polynomial, exponential time – qualitatively different	
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Polynomial Time 
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The class P	


Definition: P  = the set of (decision) problems 
solvable by computers in polynomial time,  i.e.,	


	
T(n) = O(nk) for some fixed k (indp of input).	

These problems are sometimes called tractable 
problems.	

	

Examples: sorting, shortest path, MST, connectivity, 
RNA folding & other dyn. prog., flows & matching���
– i.e.: most of this qtr	


(exceptions: Change-Making/Stamps, Knapsack, TSP)	


	


(defined later) 



Why “Polynomial”?	


Point is not that n2000 is a nice time bound, or that the 
differences among n and 2n and n2 are negligible.	


	


Rather, simple theoretical tools may not easily capture such 
differences, whereas exponentials are qualitatively different 
from polynomials and may be amenable to theoretical 
analysis.	


“My problem is in P” is a starting point for a more detailed analysis	

“My problem is not in P” may suggest that you need to shift to a more 
tractable variant 	
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Polynomial vs ���
Exponential Growth	


 	




Complexity Increase E.g. T=1012 

O(n) n0 → 2n0 1012 2  x 1012 

O(n2) n0 → √2 n0 106         1.4  x 106 

O(n3) n0 → 3√2 n0 104 1.25  x 104 

2n /10 n0 → n0+10 400 410 
2n n0 → n0 +1 40 41 

Another view of Poly vs Exp	


Next year’s computer will be 2x faster.  If I can 
solve problem of size n0 today, how large a problem 
can I solve in the same time next year? 	
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Decision vs Search Problems 
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The Clique Problem 

Given: a graph G=(V,E) and an integer k 
Question: is there a subset U of V with 
|U| ≥ k such that every pair of vertices in  
U is joined by an edge. 
 
E.g., if nodes are web pages, and edges join “similar” pages, 
then pages forming a clique are likely to be about the same 
topic 
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Decision Problems	


Computational complexity usually analyzed using 
decision problems 	


Answer is just 1 or 0  (yes or no).	

	


Why?	

Much simpler to deal with	

Deciding whether G has a k-clique, is certainly no harder 
than finding a k-clique in G, so a lower bound on deciding 
is also a lower bound on finding	

Less important, but if you have a good decider, you can 
often use it to get a good finder.  (Ex.: does G still have a 
k-clique after I remove this vertex?)  	
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“Problem” – the general case 
Ex: The Clique Problem: Given a graph G and an integer k, 
does G contain a k-clique? 

“Problem Instance” – the specific cases 
Ex: Does                     contain a 4-clique? (no) 
Ex: Does                     contain a 3-clique? (yes) 

Some Convenient Technicalities 
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Three kinds of problem: 
 Search: Find a k-clique in G           (3,              ) → 
 Decision: Is there a k-clique in G   (3,              ) → yes     
 Verification: Is this a k-clique in G  (3,              ) → no 

Problems as Sets of “Yes” Instances 
Ex: CLIQUE = { (G,k) | G contains a k-clique } 

E.g., (                 , 4) ∉  CLIQUE 
E.g., (                 , 3) ∈  CLIQUE 

But we’ll sometimes be a little sloppy and use CLIQUE 
to mean the associated search problem 

Some Convenient Technicalities 
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Beyond P 
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Algebraic Satisfiability	


Given positive integers a, b, c���
	

Question 1: does there exist a positive integer x 
such that ax = c ?	


	
	

Question 2: does there exist a positive integer x 
such that ax2 + bx = c ?���
	

Question 3: do there exist positive integers x and y 
such that ax2 + by = c ?	
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Boolean Satisfiability 

Boolean variables x1, ..., xn 
taking values in {0,1}.  0=false, 1=true 

Literals 
xi or ¬xi for i = 1, ..., n 

Clause 
a logical OR of one or more literals 
e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12) 

CNF formula (“conjunctive normal form”) 
a logical AND of a bunch of clauses 
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Boolean Satisfiability 

CNF formula example 
(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7) 

If there is some assignment of 0’s and 1’s to the 
variables that makes it true then we say the formula 
is satisfiable 

the one above is, the following isn’t 
x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3 
 

Satisfiability:  Given a CNF formula F, is it satisfiable? 
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Satisfiable? 
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SAT and 3SAT	


Satisfiability:  A Boolean formula in conjunctive normal form 
(CNF) is satisfiable if there exists an assignment of 0’s and 1’s 
to its variables such that the value of the expression is 1.  	

Example:	


      S=(x ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)	


Example above is satisfiable.  (E.g., set x=1, y=1 and z=0.)	


SAT   = the set of satisfiable CNF formulas	


3SAT = … having at most 3 literals per clause	


21	




22	


More Problems 

Independent-Set:  
Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is 
an integer, for which there is  a subset U of V  
with |U| ≥ k such that no pair of vertices in U is 
joined by an edge. 

Clique:  
Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is 
an integer k, for which there is a subset U of V 
with |U| ≥ k such that every pair of vertices in U 
is joined by an edge. 
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More Problems 

Euler Tour:  
Graphs G=(V,E) for which there is a cycle traversing each 
edge once. 

Hamilton Tour:  
Graphs G=(V,E) for which there is a simple cycle of length 
|V|, i.e., traversing each vertex once. 

TSP:  
Pairs ⟨G,k⟩, where G=(V,E,w) is a a weighted graph and k is 
an integer, such that there is a Hamilton tour of G with 
total weight ≤ k. 



More Problems 

Short Path: 
   4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with 

vertices s, t, and an integer k, for which there is a path 
from s to t of length ≤ k 

 
Long Path: 
   4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with 

vertices s, t, and an integer k, for which there is an acyclic 
path from s to t of length ≥ k 
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More Problems 

3-Coloring:  
Graphs G=(V,E) for which there is an assignment of at most 
3 colors to the vertices in G such that no two adjacent 
vertices have the same color. 
 
Example: 
 
 



Beyond P?	


There are many natural, practical problems for 
which we don’t know any polynomial-time 
algorithms:	

  e.g. CLIQUE:  	


Given an undirected graph G and an integer k, does G contain 
a k-clique?	


  e.g. quadratic Diophantine equations:	

Given a, b, c ∈ N, ∃ x, y ∈ N s.t. ax2 + by = c ?	


e.g., most of others just mentioned (excl: shortpath, Euler)	


Lack of imagination or intrinsic barrier?	
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NP 
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NP!

P!

Exp!
And  
   worse! 

Roadmap 

Not Every problem is easy (in P) 
 

Exponential time is bad 
 
Worse things happen, too 
 
There is a very commonly-seen 
class of problems, called NP, that 
appear to require exponential 
time (but unproven)  



Review: Some Problems 

Quadratic Diophantine Equations 
Clique 
Independent Set 
Euler Tour 
Hamilton Tour 
TSP 
3-Coloring 
Partition 
Satisfiability 
Short Paths 
Long Paths 

All of the form: Given 
input  X, is there a Y 
with property Z?  
Furthermore, if I had a 
purported Y, I could 
quickly test whether it 
had property Z  
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Common property of these problems: 
Discrete Exponential Search 

 Loosely–find a needle in a haystack 
“Answer” to a decision problem is literally just yes/no, but 
there’s always a somewhat more elaborate “solution” (aka 
“hint” or “certificate”; what the search version would 
report) that transparently‡ justifies each “yes” instance (and 
only those) – but it’s buried in an exponentially large search 
space of potential solutions.  
 
 
 
‡Transparently = verifiable in polynomial time 



Defining NP: The Idea	


NP consists of all decision problems where 	

	


You can verify the YES answers efficiently (in polynomial 
time) given a short (polynomial-size) hint	

	


And	

	


No hint can fool your polynomial time verifier into saying 
YES for a NO instance	

	

	

	

	

(implausible for all exponential time problems)	


one among exponentially many; 
“know it when you see it”!
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Defining NP: formally 

A decision problem L is in NP iff there is a polynomial time 
procedure v(-,-), (the “verifier”) and an integer k such that  

for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES  
and 
for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES 

(“Hints,” sometimes called “certificates,” or “witnesses”, are 
just strings. Think of them as exactly what the search version 
would output.) 

 
Note: a problem is “in NP” if it can be posed as an exponential search 
problem, even if there may be other ways to solve it.	


 



Example: Clique 

“Is there a k-clique in this graph?” 
any subset of k vertices might be a clique 
there are many such subsets, but I only need to find one 
if I knew where it was, I could describe it succinctly, e.g. 
“look at vertices 2, 3, 17, 42, ...”,  
I’d know one if I saw one: “yes, there are edges between  
2 & 3, 2 & 17,... so it’s a k-clique” 
this can be quickly checked 
And if there is no k-clique, I wouldn’t be fooled  
by a statement like “look at vertices 2, 3, 17, 42, ...”   
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More Formally: CLIQUE is in NP 

procedure v(x,h) 
if  
    x is a well-formed representation of  a graph  
    G = (V, E) and an integer k,  
and  
    h is a well-formed representation of a k-vertex  
    subset U of V,  
and  
    U is a clique in G,  
then output “YES” 
else output “I’m unconvinced”  

Important note: this answer does 
NOT mean x ∉ CLIQUE; just 
means this h isn’t a k-clique (but 
some other might be). 	
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Is it correct? 

For every x = (G,k) such that G contains a k-clique, 
there is a hint h that will cause v(x,h) to say YES, 
namely h = a list of the vertices in such a k-clique 
and 
No hint can fool v into saying yes if either x isn’t 
well-formed (the uninteresting case) or if x = (G,k) 
but G does not have any cliques of size k (the 
interesting case) 
And |h| < |x| and v(x,h) takes time ~ (|x|+|h|)2 



Example: SAT 

“Is there a satisfying assignment for this Boolean 
formula?” 

any assignment might work       
there are lots of them      
I only need one      
if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T”       
I’d know one if I saw one: “yes, plugging that in, I see formula = T...” 
and this can be quickly checked 
And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T, 
x2=F, ..., xn=F”       
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More Formally: SAT ∈ NP 

Hint: the satisfying assignment A 
Verifier: v(C, A) = syntax(C, A) && satisfies(C, A) 

Syntax: True iff  C is a well-formed CNF formula & A is a 
truth-assignment to its variables 
Satisfies: plug A into C; check that it  evaluates to True 

Correctness: 
If C is satisfiable, it has some satisfying assignment A, and 
we’ll recognize it 
If C is unsatisfiable, it doesn’t, and we won’t be fooled 

Analysis:  |A| < |C|, and time for v(C,A) ~ linear in |C|+|A| 
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IndpSet is in NP 

procedure v(x,h) 
if  
    x is a well-formed representation of  a graph  
    G = (V, E) and an integer k,  
and  
    h is a well-formed representation of a k-vertex  
    subset U of V,  
and  
    U is an Indp Set in G,  
then output “YES” 
else output “I’m unconvinced”  

Important note: this answer does 
NOT mean x ∉ IndpSet; just 
means this h isn’t a k-IndpSet (but 
some other might be). 	
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Is it correct? 

For every x = (G,k) such that G contains a k-
IndpSet, there is a hint h that will cause v(x,h) to say 
YES, namely h = a list of the vertices in such a set 
and 
No hint can fool v into saying yes if either x isn’t 
well-formed (the uninteresting case) or if x = (G,k) 
but G does not have any Indp Set of size k (the 
interesting case) 
And |h| < |x| and v(x,h) takes time ~ (|x|+|h|)2 



Example: Quad Diophantine Eqns	


“Is there an integer solution to this equation?”	

any pair of integers x & y might be a solution	


there are lots of potential pairs	

I only need to find one such pair	


if I knew a solution, I could easily describe it, e.g. “try x=42 
and y = 321”  [A slight subtlety here: some algebra will show that if there’s 

any int solution, there’s one involving ints with only polynomially many digits...]	


I’d know one if I saw one: “yes, plugging in 42 for x & 321 
for y I see ...”	

And wouldn’t be fooled by (42,321) if there’s no solution	
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Short Path	


“Is there a short path (< k) from s to t in this graph?”	

	
Any path might work	


	
There are lots of them	

	
I only need one	


	
If I knew one I could describe it succinctly, e.g., “go from s 
to node 2, then node 42, then ... ”	

	
I’d know one if I saw one: “yes, I see there’s an edge from 
s to 2 and from 2 to 42... and the total length is < k”	


	
And if there isn’t a short path, I wouldn’t be fooled by, 
e.g., “go from s to node 2, then node 42, then ... ”	
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Long Path	


“Is there a long (acyclic) path (> k) from s to t in this graph?”	

	
Any path might work	


	
There are lots of them	

	
I only need one	


	
If I knew one I could describe it succinctly, e.g., “go from s 
to node 2, then node 42, then ... ”	

	
I’d know one if I saw one: “yes, I see there’s an edge from 
s to 2 and from 2 to 42..., no dups, & total length is > k”	


	
And if there isn’t a long path, I wouldn’t be fooled by, e.g., 
“go from s to node 2, then node 42, then ... ”	
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Keys to showing  that  
a problem is in NP 

What’s the output?  (must be YES/NO) 
What’s the input?  Which are YES? 
For every given YES input, is there a hint that would help, i.e. 
allow verification in polynomial time?  Is it polynomial length? 

OK if some inputs need no hint 

For any given NO input, is there a hint that would trick you? 
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Two Final Points About “Hints” 	


1.  Hints/verifiers aren’t unique.  The “… there is a …” 
framework often suggests their form, but many 
possibilities	


	
“is there a clique” could be verified from its vertices, or its edges, or 
all but 3 of each, or all non-vertices, or…  Details of the hint string 
and the verifier and its time bound shift, but same bottom line	


	


2. In NP doesn’t prove its hard	


	
“Short Path” or “Small Spanning Tree” or “Large Flow” can be 
formulated as “…there is a…,” but, due to very special structure of 
these problems, we can quickly find the solution even without a hint.  
The mystery is whether that’s possible for the other problems, too.	
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Contrast: problems not in NP (probably)  

Rather than “there is a…” maybe it’s  
“no…” or “for all…” or “the smallest/largest…” 

E.g. 
    UNSAT: “no assignment satisfies formula,” or  

“for all assignments, formula is false” 
Or 
    NOCLIQUE: “every subset of k vertices is not a k-clique” 

 MAXCLIQUE: “the largest clique has size k” 
It seems unlikely that a single, short hint is sufficiently 
informative to allow poly time verification of properties like 
these (but this is also an important open problem). 45	




Another Contrast: Mostly Long Paths	


“Are the majority of paths from s to t long (>k)?”	

	
Any path might work	


	
There are lots of them	

	
I only need one	


	
If I knew one I could describe it ���
succinctly, e.g., “go from A to node���
2, then node 42, then ... ”	

	
I’d know one if I saw one: “yes, I���
see an edge from A to 2 and from ���
2 to 42... and total length > k”	

	
And if there isn’t a long path, I wouldn’t be fooled …	
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Yes!	
 No, this is a 
collective 
property of the 
set of all paths in 
the graph, and no 
one path 
overrules the rest	




Problems in P can also be verified in 
polynomial-time	


	

Short Path: Given a graph G with edge lengths, is there a 
path from s to t of length ≤ k?	


Verify: Given a purported path from s to t, is it a path, is its length ≤ 
k?	


	

Small Spanning Tree: Given a weighted undirected graph G, 
is there a spanning tree of weight ≤ k?	


Verify: Given a purported spanning tree, is it a spanning tree, is its 
weight ≤ k?���
	


(But the hints aren’t really needed in these cases…)	
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Relating P to NP 
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NP!

P!

49 

NP = Polynomial-time 
verifiable 

 
P   = Polynomial-time 

solvable 
 

P ⊆ NP: “verifier” is 
just the P-time alg; 
ignore “hint” 

 

Complexity Classes 
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The most obvious algorithm for most of these 
problems is brute force: 

try all possible hints; check each one to see if it works. 
Exponential time: 

2n truth assignments for n variables 

n! possible TSP tours of n vertices 

     possible k element subsets of n vertices 

etc. 

…and to date, every alg, even much less-obvious 
ones, are slow, too  

!
"

#
$
%

&
k
n

Solving NP problems without hints 
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nk!

2nk!

accept 

Needle  
in the  

haystack 

P vs NP vs Exponential Time 

Theorem: Every problem in 
NP can be solved 
(deterministically) in 
exponential time 
 
Proof: “hints” are only nk 
long; try all 2nk possibilities, 
say, by backtracking.  If any 
succeed, answer YES; if  
all fail, answer NO. 
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NP!

P!

Exp!
And  
   worse! 

P and NP 

Every problem in P is in NP 
one doesn’t even need a hint for 
problems in P so just ignore any 
hint you are given 
 

Every problem in NP is in 
exponential time 
 
I.e., P ⊆ NP ⊆ Exp 
We know P ≠ Exp, so either 
P ≠NP, or NP ≠ Exp (most 
likely both) 
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Does P = NP?	


This is the big open question!	

To show that P = NP, we have to show that every 
problem that belongs to NP can be solved by a 
polynomial time deterministic algorithm.  	


Would be very cool, but no one has shown this yet.	

(And it seems unlikely to be true.)	

(Also seems daunting: there are infinitely many problems in 
NP; do we have to pick them off one at a time…?)	
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More History – As of 1970	


Many of the above problems had been studied for decades	

All had real, practical applications	

None had poly time algorithms; exponential was best known	

	

But, it turns out they all have a very deep similarity under 
the skin	




 
Euler Tour 
2-SAT 
2-Coloring 
Min Cut 
Shortest Path 

55	


 
Hamilton Tour 
3-SAT 
3-Coloring 
Max Cut 
Longest Path 

Similar pairs; seemingly 
different computationally!

Superficially different; 
sim

ilar com
putationally!

Some Problem Pairs 
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P vs NP 

Theory 
P = NP ? 
Open Problem! 
I bet against it 
 

Practice 
Many interesting, useful, 
natural, well-studied 
problems known to be 
NP-complete 
With rare exceptions, no 
one routinely finds exact 
solutions to large, arbitrary 
instances 



P vs NP: Summary so far 

P = “poly time solvable” 
NP = “poly time verifiable” (nondeterministic poly time solvable) 
Defined only for decision problems, but fundamentally about 

search: can cast many problems as searching for a poly size, 
poly time verifiable “solution” in a 2poly size “search space.”   

Examples:  
is there a big clique? Space = all big subsets of vertices; solution = 

 one subset; verify = check all edges 
is there a satisfying assignment?  Space = all assignments; 

 solution = one asgt; verify = eval formula 

Sometimes we can do that quickly (is there a small spanning 
tree?); P = NP would mean we could always do it quickly. 
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NP: Yet to come 

NP-Completeness: the “hardest” problems in NP. 
Surprisingly, most known problems in NP are equivalent, in a 
strong sense, despite great superficial differences. 
Reductions: key to showing those facts. 
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Reduction 
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Reductions: a useful tool	


Definition: To “reduce A to B” means to solve A, 
given a subroutine solving B.	

	

Example: reduce MEDIAN to SORT	


Solution: sort, then select (n/2)nd	


Example: reduce SORT to FIND_MAX	

Solution: FIND_MAX, remove it, repeat	


Example: reduce MEDIAN to FIND_MAX	

Solution: transitivity: compose solutions above.	
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“complexity of A” ≤ “complexity of B” + “complexity of reduction” !

P-time Reductions: What, Why	


Definition: To reduce A to B means to solve A, 
given a subroutine solving B.	

	


Fast algorithm for B implies fast algorithm for A	

(nearly as fast; takes some time to set up call, etc.)	

	


If every algorithm for A is slow, then no algorithm 
for B can be fast.	
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Using an Algorithm for B to Solve A 

“If A ≤p
 B, and we can solve B in polynomial time, 

then we can solve A in polynomial time also.” 

Subroutine 
to compute f 

x 

Subroutine 
to solve B 

f(x) 

x ∈ A? 

Glue 

x 

Algorithm to solve A 

Key issue: Can we (quickly) turn an A-instance x into one (or more) B-
instance(s) f(x) so that answer(s) to “f(x) ∈ B” help us decide x ∈ A”?  



SAT and Independent Set 
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Input: Undirected graph G = (V, E), integer k. 
Output: True iff there is a subset I of V of size ≥ k 
such that no edge in E has both end points in I. 
 
Example: Independent Set of size ≥ 2. 
 
 
In NP?  Exercise 
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Another NP problem:  
Independent Set 
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3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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k=3 

3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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k=3 

x3!

¬x1!

x3!

3SAT ≤p IndpSet  

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3) 

¬x3!

¬x2!

x1!x1!

x2!

¬x3!
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f                                                                           = 
        

3-SAT Instance:!
– Variables: x1, x2, …     !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

IndpSet Instance:!
–  k = q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ( [i,j], [k,l] ) | i = k or yij = ¬ykl }!

3SAT ≤p IndpSet  
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k=2 

3SAT ≤p IndpSet  

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3) 

¬x3!

¬x2!

x1!x1!

x2!

¬x3!
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3SAT ≤p IndpSet  

    

k=3 



Correctness of “3SAT ≤p IndpSet” 

Summary of reduction function f:  Given formula, make graph G with one group 
per clause, one node per literal.  Connect each to all nodes in same group; 
connect all complementary literal pairs (x, ¬x). Output graph G plus integer k = 
number of clauses.  Note: f does not know whether formula is satisfiable or not; does 
not know if G has k-IndpSet; does not try to find satisfying assignment or set. 
Correctness: 
 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; mapping basically straightforward.   
 • Show c in 3-SAT iff f(c)=(G,k) in IndpSet:  
(⇒) Given an assignment satisfying c, pick one true literal per clause.  Add 
corresponding node of each triangle to set.  Show it is an IndpSet: 1 per triangle 
never conflicts w/ another in same triangle; only true literals (but perhaps not all 
true literals) picked, so not both ends of any (x, ¬x) edge. 
(⇐) Given a k-Independent Set in G, selected labels define a valid (perhaps 
partial) truth assignment since no (x, ¬x) pair picked.  It satisfies c since there is 
one selected node in each clause triangle (else some other clause triangle has > 1 
selected node, hence not an independent set.) 
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(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p IndpSet” 

Suppose we had a fast algorithm  
for IndpSet, then we could  
get a fast algorithm for 3SAT: 

Given 3-CNF formula w, build Independent 
Set instance y = f(w) as above, run the fast  
IS alg on y; say “YES, w is satisfiable” iff IS alg says “YES, y 
has a Independent Set of the given size” 

On the other hand, suppose no fast alg is possible 
for 3SAT, then we know none is possible for 
Independent Set either. 



“3SAT ≤p IndpSet” Retrospective	


Previous slides: two suppositions	

Somewhat clumsy to have to state things that way.	


Alternative: abstract out the key elements, give it a name 
(“polynomial time mapping reduction”), then properties like 
the above always hold. 	
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More Reductions 

SAT to Subset Sum (Knapsack) 
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Subset-Sum, AKA Knapsack 

KNAP = { (w1, w2, …, wn, C) | a subset of the wi sums to C } 
 
wi’s and C encoded in radix r ≥ 2.  (Decimal used in 

following example.) 
 
Theorem:  3-SAT  ≤p  KNAP 
Pf: given formula with p variables & q clauses, build KNAP instance with  

2(p+q) wi’s, each with (p+q) decimal digits. For the 2p “literal” 
weights, H.O. p digits mark which variable; L.O. q digits show which 
clauses contain it. Two “slack” weights per clause mark that clause. 
See examples below. 
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3-SAT  ≤p  KNAP 

Variables Clauses 
x y z (x ∨ y ∨ z)  (¬x ∨ y ∨ ¬z)  (¬x ∨ ¬y ∨ z)  

Li
te

ra
ls

 w1  (   x) 1 0 0 1 0 0 
w2  (¬x)  1 0 0 0 1 1 
w3  (  y) 1 0 1 1 0 
w4  (¬y) 1 0 0 0 1 
w5  ( z) 1 1 0 1 
w6  (¬z) 1 0 1 0 

Sl
ac

k 

w7  (s11) 1 0 0 
w8  (s12) 1 0 0 
w9  (s21) 1 0 
w10 (s22) 1 0 
w11 (s31) 1 
w12 (s32) 1 
C 1 1 1 3 3 3 

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)   
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What/How Many Satisfying 

Assignments? 
 

What/How Many KNAP 
solutions? 

 



3-SAT  ≤p  KNAP 

Variables Clauses 
x y z (x ∨ y ∨ z)  (¬x ∨ y ∨ ¬z)  (¬x ∨ ¬y ∨ z)  

Li
te

ra
ls

 w1  (   x) 1 0 0 1 0 0 
w2  (¬x)  1 0 0 0 1 1 
w3  (   y) 1 0 1 1 0 
w4  (¬y) 1 0 0 0 1 
w5  (   z) 1 1 0 1 
w6  (¬z) 1 0 1 0 

Sl
ac

k 

w7  (s11) 1 0 0 
w8  (s12) 1 0 0 
w9  (s21) 1 0 
w10 (s22) 1 0 
w11 (s31) 1 
w12 (s32) 1 
C 1 1 1 3 3 3 

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)   
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What/How Many Satisfying 

Assignments? 
 

What/How Many KNAP 
solutions? 

 



3-SAT  ≤p  KNAP 

Variables Clauses 
x y z (x ∨ y ∨ z)  (¬x ∨ y ∨ ¬z)  (¬x ∨ ¬y ∨ z)  

Li
te

ra
ls

 w1  (   x) 1 0 0 1 0 0 
w2  (¬x)  1 0 0 0 1 1 
w3  (   y) 1 0 1 1 0 
w4  (¬y) 1 0 0 0 1 
w5  (   z) 1 1 0 1 
w6  (¬z) 1 0 1 0 

Sl
ac

k 

w7  (s11) 1 0 0 
w8  (s12) 1 0 0 
w9  (s21) 1 0 
w10 (s22) 1 0 
w11 (s31) 1 
w12 (s32) 1 
C 1 1 1 3 3 3 

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)   
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What/How Many Satisfying 

Assignments? 
 

What/How Many KNAP 
solutions? 

 



3-SAT  ≤p  KNAP 

Variables Clauses 
x y z (x ∨ y ∨ z)  (¬x ∨ y ∨ ¬z)  (¬x ∨ ¬y ∨ z)  

Li
te

ra
ls

 w1  (   x) 1 0 0 1 0 0 
w2  (¬x)  1 0 0 0 1 1 
w3  (   y) 1 0 1 1 0 
w4  (¬y) 1 0 0 0 1 
w5  (   z) 1 1 0 1 
w6  (¬z) 1 0 1 0 

Sl
ac

k 

w7  (s11) 1 0 0 
w8  (s12) 1 0 0 
w9  (s21) 1 0 
w10 (s22) 1 0 
w11 (s31) 1 
w12 (s32) 1 
C 1 1 1 3 3 3 

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)   
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What/How Many Satisfying Assignments/KNAP solutions? 



Correctness 

Poly time for reduction is routine; details omitted.  Again note that it does 
not look at satisfying assignment(s), if any, nor at subset sums, but the 
problem instance it builds captures one via the other...  

If formula is satisfiable, select the literal weights corresponding to the true 
literals in a satisfying assignment. If that assignment satisfies k literals in a 
clause, also select (3 - k) of the “slack” weights for that clause.  Total = C. 

Conversely, suppose KNAP instance has a solution. Columns are decoupled 
since ≤ 5 one’s per column, so no “carries” in sum (recall – weights are 
decimal).  Since H.O. p digits of C are 1, exactly one of each pair of literal 
weights included in the subset, so it defines a valid assignment. Since L.O. 
q digits of C are 3, but at most 2 “slack” weights contribute to each, at 
least one of the selected literal weights must be 1 in that clause, hence the 
assignment satisfies the formula. 
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Polynomial Time Reduction 
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Two definitions of “A ≤p B”	


Book uses general definition: “could solve A in ���
poly time, if I had a poly time subroutine for B.”	


Examples on previous slides are special case where 
you only get to call the subroutine once, and must 
report its answer.	


This special case is used in ~98% of all reductions	


Largely irrelevant for this course, but if you seem to need 1st defn, e.g. on 
HW, fine, but there’s perhaps a simpler way…	


K
ar

p 
   

   
   

C
oo

k	
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Using an Algorithm for B to Solve A 

“If A ≤p
 B, and we can solve B in polynomial time, 

then we can solve A in polynomial time also.” 

Subroutine 
to compute f 

x 

Subroutine 
to solve B 

f(x) 

x ∈ A? 

Glue 

x 

Algorithm to solve A 

Key issue: Can we (quickly) turn an A-instance x into one (or more) B-
instance(s) f(x) so that answer(s) to “f(x) ∈ B” help us decide x ∈ A”?  
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Using an Algorithm for B to Solve A 

Algorithm  
to compute f 

x Algorithm  
to solve B 

f(x) f(x) ∈ B? x ∈ A? 

Algorithm to solve A 

“If A ≤p
 B, and we can solve B in polynomial time, 

then we can solve A in polynomial time also.” 

Ex: suppose f takes O(n3) and algorithm for B takes O(n2).   
How long does the above algorithm for A take? 
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Polynomial-Time Reductions 

Definition: Let A and B be two decision problems. 
We say that A is polynomially (mapping) reducible to 
B (A  ≤p B) if there exists a polynomial-time 
algorithm f that converts each instance x of problem 
A to an instance f(x) of B such that: 
 
x is a YES instance of A  iff  f(x) is a YES instance of B 

 
x ∈ A   ⇔   f(x) ∈ B  



88	


polynomial	


W
hy

 th
e 

no
ta

tio
n?
	


Polynomial-Time Reductions (cont.) 

Defn: A ≤p B  “A is polynomial-time reducible to B,” 
iff there is a polynomial-time computable function f 
such that:   x ∈ A   ⇔   f(x) ∈ B  
 

“complexity of A” ≤ “complexity of B” + “complexity of f ” 
 

(1)  A ≤p B  and  B ∈ P   ⇒   A ∈ P  
(2)  A ≤p B  and  A ∉ P   ⇒   B ∉ P   
(3)  A ≤p B  and  B ≤p C   ⇒   A ≤p C  (transitivity) 



More Reductions 

SAT to Coloring 
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NP-complete problem: 3-Coloring 

Input: An undirected graph G=(V,E). 
Output: True iff there is an assignment of at most 3 
colors to the vertices in G such that no two 
adjacent vertices have the same color. 
 
Example: 
 
 
In NP?  Exercise 
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T!

F!

N!

T!

F!

A 3-Coloring Gadget: 
 

In what ways can this be 3-colored? 
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N!



T!

F!

N!

output	


inputs	


Exercise: find 
all colorings of 

5 nodes 	


A 3-Coloring Gadget: 
“Sort of an OR gate“ 

if output is T, some input must be T 
 

NB: this is not  the same gadget as used in KT 8.7 
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3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

3Color Instance:!
–  G!= (V, E)!
–  6 q + 2 n + 3 vertices!
–  13 q + 3 n + 3 edges!
–  (See Example for details)!

3SAT ≤p 3Color  

 
f                                                                        = 
 

93	




x1!

¬x1!

x2!

¬x2!

T!

F!

N!

 (x1 ∨ ¬x1 ∨ ¬x1)  
∧  

(¬x1 ∨ x2 ∨ ¬x2)!
3SAT ≤p 3Color Example 

6 q + 2 n + 3 vertices          13 q + 3 n + 3 edges!
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Correctness of “3SAT ≤p 3Coloring” 

Summary of reduction function f: 
Given formula, make G with T-F-N triangle, 1 pair of literal nodes per variable, 2 
“or” gadgets per clause, connected as in example.   
Note: again, f does not know or construct satisfying assignment or coloring. 
Correctness: 
 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; graph looks messy, but pattern is basically straightforward.   
 • Show c in 3-SAT iff f(c) is 3-colorable:  
(⇒) Given an assignment satisfying c, color literals T/F as per assignment; can  
color “or” gadgets so output nodes are T since each clause is satisfied. 
(⇐) Given a 3-coloring of f(c), name colors T-N-F as in example.  All square 
nodes are T or F (since all adjacent to N).  Each variable pair (xi, ¬xi) must have 
complementary labels since they’re adjacent.  Define assignment based on colors 
of xi’s.  Clause “output” nodes must be colored T since they’re adjacent to both 
N & F.   By fact noted earlier, output can be T only if at least one input is T, 
hence it is a satisfying assignment. 
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NP-completeness 

96	
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NP-Completeness 

Definition: Problem B is  
NP-complete if: 

(1) B belongs to NP, and  
(2) every problem in NP is 
polynomially reducible to B. 
 

Intuitively, these are the  
“hardest problems” in NP 
They are also all deeply related– 
solving any solves them all! 

NP!

P!

Exp!

NP-Complete 

Worse 



NP-completeness (cont.)	


Thousands of important problems have ���
been shown to be NP-complete.	

	

The general belief is that there is no efficient 
algorithm for any NP-complete problem, but no 
proof of that belief is known. 	

	

Examples: SAT, clique, vertex cover, IndpSet, Ham 
tour, TSP, bin packing… Basically, everything we’ve 
seen that’s in NP but not known to be in P	
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NP!
P!

Exp!
NP-Complete 

Worse 



99	


Alt way to prove NP-completeness 

Lemma: Problem B is NP-complete iff: 
(1)  B belongs to NP, and  
(2’) A is polynomial-time reducible to B, for some problem 
A that is NP-complete. 
 

That is, to show NP-completeness of a new 
problem B in NP, it suffices to show that SAT or 
any other NP-complete problem is polynomial-time 
reducible to B. 
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Ex: IndpSet is NP-complete 

3-SAT is NP-complete (S. Cook; see below) 
3-SAT ≤p IndpSet 
IndpSet is in NP  
Therefore IndpSet is also NP-complete 
 
So, poly-time algorithm for IndpSet would give poly-
time algs for everything in NP 
 
Ditto for KNAP, 3COLOR, … 

we showed these earlier 



Cook’s Theorem 

SAT is NP-Complete 
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Cook’s Theorem 

Theorem: Every problem in NP is reducible to SAT 

Proof Sketch: SAT assignment = hint; formula = verifier. 
 
 
 
 
 
 
 
	


Pf uses generic NP problems, but a few specific examples will give the flavor	
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Encode “hint” using Boolean variables.  SAT mimics “is there a hint” via “is 
there an assignment”.  The “verifier” runs on a digital computer, and digital 
computers just do Boolean logic.  “SAT” can mimic that, too, hence can 
verify that the assignment actually encodes a hint the verifier would accept. 

Generic “NP” problem: is there a poly size “hint,” verifiable in poly time 

“SAT”:  is there an assignment (the hint) satisfying the formula (the verifier)



3-Coloring ≤p SAT      

Given G = (V, E) 
∀ i in V, variables ri, gi, bi encode color of i 
 

∧i ∈ V [(ri ∨ gi ∨ bi) ∧  
 (¬ri ∨ ¬gi) ∧ (¬gi ∨ ¬bi) ∧ (¬bi ∨ ¬ri)] ∧ 

∧(i,j) ∈ E [(¬ri ∨ ¬rj) ∧ (¬gi ∨ ¬gj) ∧ (¬bi ∨ ¬bj)] 
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adj nodes ⇔ diff colors	

no node gets 2 	

every node gets a color	


hi
nt

 
ve

ri
fie

r 

Equivalently: 
(¬(ri  ∧ gi)) ∧ (¬(gi  ∧ bi)) ∧ (¬(bi  ∧ ri)) ∧ 
∧(i,j) ∈ E [(ri ⇒ ¬rj) ∧ (gi ⇒ ¬gj) ∧ (bi ⇒ ¬bj)] 



Independent Set ≤p SAT 

Given G = (V, E) and k 
∀ i in V, variable xi encodes inclusion of i in IS 
 

 

∧(i,j) ∈ E (¬xi ∨ ¬xj) ∧ “number of True xi is ≥ k”  
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every edge has one end 
or other not in IS ���

(no edge connects 2 in IS)	


possible in 3 CNF, but technically 
messy, so details omitted; ���

basically, count 1’s	


hi
nt

 
ve

ri
fie

r 



Coping with NP-hardness 
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Coping with NP-Completeness	


Is your real problem a special subcase?	

E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto  3- vs 2-
coloring	

E.g. only need planar-/interval-/degree 3 graphs, trees,…?	


Guaranteed approximation good enough?	

E.g. Euclidean TSP within 1.5 * Opt in poly time	


Fast enough in practice (esp. if n is small), 	

E.g. clever exhaustive search like dynamic programming, 
backtrack, branch & bound, pruning	


Heuristics – usually a good approx and/or fast	
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3 

4 6 

4 7 
2 

5 
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           Example:	

	
          b = 34	


NP-complete problem: TSP	


Input: An undirected graph 
G=(V,E) with integer edge 
weights, and an integer b.	

	


Output: YES iff there is a 
simple cycle in G passing 
through all vertices (once), 
with total cost ≤ b.	




Recall NN Heuristic–go to nearest unvisited vertex	

	

	

	

Fact: NN tour can be about (log n) x opt, i.e. ���
���
���
���
	

(above example is not that bad)	
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€ 

limn→∞

NN
OPT

→∞

TSP - Nearest Neighbor Heuristic	




A TSP tour visits all vertices, so contains a spanning tree, so 
cost of min spanning tree < TSP cost.	


Find MST	


Find “DFS” Tour	


Shortcut	


TSP ≤ shortcut < DFST = 2 * MST < 2 * TSP	


5 

4 

2 
5 

6 

4 

7 

8 

3 

2x Approximation to EuclideanTSP	
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≤5+2+3+5	


≤4+3	




P / NP Summary 
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P 

Many important problems are in P: solvable in deterministic 
polynomial time 

 Details are the fodder of algorithms courses.  We’ve seen a few 
examples here, plus many other examples in other courses 

Few problems not in P are routinely solved;  
 For those that are, practice is usually restricted to small instances, or 
we’re forced to settle for approximate, suboptimal, or heuristic 
“solutions” 

A major goal of complexity theory is to delineate the 
boundaries of what we can feasibly solve 
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NP 

The tip-of-the-iceberg in terms of problems conjectured not 
to be in P, but a very important tip, because 

a) they’re very commonly encountered, probably because 
b) they arise naturally from basic “search” and 

“optimization” questions. 
 
Definition: poly time verifiable;  

“guess and check”, “is there a…” – are also useful views 
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NP-completeness 

Defn & Properties of ≤p 
 
A is NP-complete: in NP & everything in NP reducible to A 

 “the hardest problems in NP” 
 “All alike under the skin” 

Most known natural problems in NP are complete 
 #1: 3CNF-SAT 
 Many others: Clique, IndpSet, 3Color, KNAP, HamPath, TSP, 
… 
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NP!
P!

Exp!
NP-Complete 

Worse 
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NP!

P!

Exp!
Worse… 

NP-C Summary 

Big-O     –  good 
P           –  good 
Exp        –  bad 
Exp, but hints help?  NP 
NP-hard, NP-complete – bad (I bet) 
To show NP-complete – reductions 
NP-complete = hopeless? – no, but you  
  need to lower your expectations:  
  heuristics, approximations and/or small instances. 



Common Errors in  
NP-completeness Proofs 

Backwards reductions 
Bipartiteness ≤p SAT is true, but not so useful.  
(XYZ ≤p SAT shows XYZ in NP, doesn’t show it’s hard.) 

Sloooow Reductions  
“Find a satisfying assignment, then output…” 

Half Reductions 
E.g., delete dashed edges in 3Color reduction.  It’s still true 
that “c satisfiable ⇒ G is 3 colorable”, but 3-colorings 
don’t necessarily give satisfying- (or valid) assignments. 
E.g., add or delete slacks in KNAP: similar troubles 
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“I can’t find an efficient algorithm, but neither can all these 
famous people.”                                    [Garey & Johnson, 1979] 

The Big Boss is 

IN 
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NP-completeness might save 
your job someday … 
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