6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Exercises: by "density" = weight per unit time? Other ideas?

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $i<j$ such that $j o b i$ is compatible with j.

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	$p(j)$
0	-
1	0
2	0
3	0
4	1
5	0
6	2
7	3
8	5

Dynamic Programming: Binary Choice

Notation. OPT $(\mathrm{j})=$ value of optimal solution to the problem consisting of job requests $1,2, \ldots, j$.

- Case 1: Optimum selects job j.
- can't use incompatible jobs $\{p(j)+1, p(j)+2, \ldots, j-1\}$
- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, p(j)$
- Case 2: Optimum does not select job j.
- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$
O P T(j)=\left\{\begin{array}{cl}
0 & \text { if } \mathrm{j}=0 \\
\max \left\{v_{j}+O P T(p(j)), O P T(j-1)\right\} & \text { otherwise }
\end{array}\right.
$$

Weighted Interval Scheduling: Brute Force Recursion

Brute force recursive algorithm.

```
Input: n, si,\ldots,\mp@code{S},\mp@subsup{\mathbf{f}}{1}{},\ldots,\mp@subsup{\mathbf{f}}{\textrm{n}}{},\mp@subsup{\textrm{v}}{1}{},\ldots,\mp@subsup{\mathbf{v}}{\textrm{n}}{}
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), ... p(n)
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max(v}\mp@subsup{v}{j}{}+\mathrm{ Compute-Opt(p(j)), Compute-Opt(j-1))
}
```


Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm is correct, but spectacularly slow because of redundant sub-problems \Rightarrow exponential time.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s}\mp@subsup{\mathbf{s}}{1}{},\ldots,\mp@subsup{\mathbf{S}}{\textrm{n}}{},\mp@subsup{\textrm{f}}{1}{},\ldots,\mp@subsup{\mathbf{f}}{\textrm{n}}{},\mp@subsup{\textrm{v}}{1}{},\ldots,\mp@subsup{\mathbf{v}}{\textrm{n}}{
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
    OPT[0] = 0
    for j = 1 to n
        OPT[j] = max(vj + OPT[p(j)], OPT[j-1])
}
Output OPT[n]
```

Claim: OPT[j] is value of optimal solution for jobs $1 . . j$
Timing: Easy. Main loop is $O(n)$; sorting is $O(n \log n)$; what about $p(j)$?

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $i<j$ such that $j o b i$ is compatible with j.

Ex: $p(8)=5, p(7)=3, p(2)=0$.

j	vj	pj	optj
0	-	-	0
1		0	
2		0	
3		0	
4		1	
5		0	
6		2	
7		3	
8		5	

Weighted Interval Scheduling Example

Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. $p(j)=$ largest $i<j$ s.t. job i is compatible with j.

j		vj	$\max \left(\mathrm{v}_{\mathrm{j}}+\right.$ opt[p(j)], opt[j-1]) $=$	opt[j]
0	-	-	-	0
1	0	2	$\max (2+0,0)=$	2
2	0	3	$\max (3+0,2)=$	3
3	0	1	$\max (1+0,3)=$	3
4	1	6	$\max (6+2,3)=$	8
5	0	9	$\max (9+0,8)=$	9
6	2	7	$\max (7+3,9)=$	10
7	3	2	$\max (2+3,10)=$	10
8	5	?	$\max (?+9,10)=$?

Exercise: What values of v8 cause it to be in/ex-cluded from opt?

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing - "traceback"

```
Run M-Compute-Opt(n)
Run Find-Solution(n)
Find-Solution(j) { the condition
    if (j = 0)
        output nothing
    else if (v}\mp@subsup{v}{j}{}+\operatorname{OPT[p(j)]>OPT[j-1])}\mathrm{ computing
        print j
        Find-Solution(p(j))
    else
            Find-Solution(j-1)
}
```

- \# of recursive calls $\leq n \Rightarrow O(n)$.

Sidebar: why does job ordering matter?

It's Not for the same reason as in the greedy algorithm for unweighted interval scheduling.

Instead, it's because it allows us to consider only a small number of subproblems ($\mathrm{O}(\mathrm{n})$), vs the exponential number that seem to be needed if the jobs aren't ordered (seemingly, any of the 2^{n} possible subsets might be relevant)

Don't believe me? Think about the analogous problem for weighted rectangles instead of intervals... (l.e., pick max weight non-overlapping subset of a set of axis-parallel rectangles.) Same problem for squares or circles also appears difficult.

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_{i}>0$ kilograms and has value $v_{i}>0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3,4\}$ has value 40 .

Item	Value	Weight	V/W
1	1	1	1
2	6	2	3
3	18	5	3.60
4	22	6	3.66
5	28	7	4

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}. Ex: $\{5,2,1\}$ achieves only value $=35 \Rightarrow$ greedy not optimal. [NB greedy is optimal for "fractional knapsack": take \#5 + 4/6 of \#4]

Dynamic Programming: False Start

Def. OPT(i) $=$ max profit subset of items $1, \ldots, i$.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$
- Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to reject other items
- without knowing what other items were selected before i, we don' \dagger even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. $\operatorname{OPT}(i, w)=\max$ profit subset of items $1, \ldots, i$ with weight limit w.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$ using weight limit w
- Case 2: OPT selects item i.
- new weight limit $=w-w_{i}$
- OPT selects best of $\{1,2, \ldots, i-1\}$ using this new weight limit

$$
O P T(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ O P T(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \{O P T(i-1, w), & \left.v_{i}+O P T\left(i-1, w-w_{i}\right)\right\} \\ \text { otherwise }\end{cases}
$$

Knapsack Problem: Bottom-Up

OPT($i, w)=$ max profit subset of items $1, \ldots, i$ with weight limit w.

```
Input: \(\mathrm{n}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{N}}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}\)
for \(w=0\) to \(W\)
    \(\mathrm{OPT}[0, \mathrm{w}]=0\)
for \(i=1\) to \(n\)
    for \(w=1\) to \(w\)
        if ( \(\left.w_{i}>w\right)\)
        OPT[i,w] = OPT[i-1,w]
        else
        OPT[i, w] \(=\max \left\{O P T[i-1, w], v_{i}+\operatorname{OPT}\left[i-1, w-w_{i}\right]\right\}\)
return \(O P T[n, W]\)
```

(Correctness: prove it by induction on i \& w.)

Knapsack Algorithm
\qquad

OPT: $\{4,3\}$

$$
W=11
$$

value $=22+18=40$

```
if ( }\mp@subsup{w}{i}{\prime}>w
```

if (}\mp@subsup{w}{i}{\prime}>w
OPT[i,w] = OPT[i-1,w]
OPT[i,w] = OPT[i-1,w]
else
else
OPT[i, w] = max{OPT[i-1,w], vi+OPT[i-1,w-wi]}

```
        OPT[i, w] = max{OPT[i-1,w], vi+OPT[i-1,w-wi]}
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
- "Pseudo-polynomial."
- Knapsack is NP-hard. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial time algorithm that produces a feasible solution that has value within 0.01% (or any other desired factor) of optimum. [Section 11.8]

