CSE 4 I7

Chapter 4: Greedy Algorithms

Many Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)

AYCITITSUMRTIM
 WALISIITMEI

Intro: Coin Changing

Coin Changing

Goal. Given currency denominations: I, 5, $10,25,100$, give change to customer using fewest number of coins.

Ex: 34ф

Algorithm is "Greedy": One large coin better than two or more smaller ones

Cashier's algorithm. At each step, give the largest coin valued \leq the amount to be paid.

Ex: \$2.89

Observation. Greedy is sub-optimal for US postal denominations: I, IO, $2 \mathrm{I}, 34,70,100,350,1225,1500$.

Counterexample. 140¢.

- Greedy: I00, 34, I, I, I, I, I, I.
- Optimal: 70, 70.

Algorithm is "Greedy", but also short-sighted attractive choice now may lead to dead ends later.

Correctness is key!

Outline \& Goals

"Greedy Algorithms" what they are

Pros
intuitive
often simple often fast

Cons often incorrect!

Proofs are crucial. 3 (of many) techniques:
stay ahead
structural
exchange arguments

4.I Interval Scheduling

Proof Technique I: "greedy stays ahead"

Interval Scheduling

Interval scheduling.

- Job j starts at s_{j} and finishes at f_{j}.
- Two jobs compatible if they don't overlap.
. Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- What order?
- Does that give best answer?
- Why or why not?
- Does it help to be greedy about order?

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.
[Earliest start time] Order jobs by ascending start time s_{j}
[Earliest finish time] Order jobs by ascending finish time f_{j}
[Shortest interval] Order jobs by ascending interval length $f_{j}-s_{j}$
[Longest Interval] Reverse of the above
[Fewest conflicts] For each job j, let c_{j} be the count the number of jobs in conflict with j. Order jobs by ascending c_{j}

Can You Find Counterexamples?

E.g., Longest Interval:

Others?:

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.
breaks earliest start time
breaks shortest interval
breaks fewest conflicts

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that
f
/ jobs selected
A}\leftarrow
for j = 1 to n {
    if (job j compatible with A)
        A}\leftarrowA\cup{j
}
return A
```

Implementation. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.

- Remember job j^{*} that was added last to A.
- Job j is compatible with A if $s_{j} \geq f_{j_{*}}$.

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling: Correctness

Theorem. Earliest Finish First Greedy algorithm is optimal.

Pf. ("greedy stays ahead")
Let $g_{1}, \ldots g_{k}$ be greedy's job picks, $j_{1}, \ldots j_{m}$ those in some optimal solution Show $f\left(g_{r}\right) \leq f\left(j_{r}\right)$ by induction on r.

Basis: g_{1} chosen to have min finish time, so $f\left(g_{1}\right) \leq f\left(j_{1}\right)$ Ind: $f\left(g_{r}\right) \leq f\left(j_{r}\right) \leq s\left(j_{r+1}\right)$, so j_{r+1} is among the candidates considered by greedy when it picked g_{r+1}, \& it picks min finish, so $f\left(g_{r+1}\right) \leq f\left(j_{r+1}\right)$ Similarly, $k \geq m$, else j_{k+1} is among (nonempty) set of candidates for g_{k+1}

4.I Interval Partitioning

Proof Technique 2: "Structural"

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Interval Partitioning as Interval Graph Coloring

```
Vertices = classes;
edges = conflicting class pairs;
different colors \(=\) different assigned rooms
```

Note: graph coloring is very hard in general, but graphs corresponding to interval intersections are a much

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: Same classes, but this schedule uses only 3 rooms.

Def. The depth of a set of open intervals is the maximum number that contain any given time.
no collisions at ends
Key observation. Number of classrooms needed \geq depth.
Ex: Depth of schedule below $=3 \Rightarrow$ schedule is optimal. e.g., a, b, c all contain 9:30
Q. Does a schedule equal to depth of intervals always exist?

Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by start time so sm
d }\leftarrow\mathbf{0}\leftarrow\mathrm{ number of allocated classrooms
for j = 1 to n {
    if (lect j is compatible with some room k, 1\leqksd)
        schedule lecture j in classroom k
        else
            allocate a new classroom d + 1
            schedule lecture j in classroom d + 1
            d}\leftarrowd+
}
```


Implementation? Run-time?

Exercises

Observation. Earliest Start First Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Earliest Start First Greedy algorithm is optimal. Pf (exploit structural property).

- Let $\mathrm{d}=$ number of rooms the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-I previously used classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_{j}.
- Thus, d lectures overlap at time $\mathrm{s}_{\mathrm{j}}+\varepsilon$, i.e. depth $\geq \mathrm{d}$
- "Key observation" on earlier slide \Rightarrow all schedules use \geq depth rooms, so $d=$ depth and greedy is optimal

4.2 Scheduling to Minimize Lateness

Proof Technique 3: "Exchange" Arguments

Scheduling to Minimize Lateness

Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_{j} units of processing time $\&$ is due at time d_{j}.
- If j starts at time s_{j}, it finishes at time $f_{j}=s_{j}+t_{j}$.
- Lateness: $\ell_{\mathrm{j}}=\max \left\{0, \mathrm{f}_{\mathrm{j}}-\mathrm{d}_{\mathrm{j}}\right\}$.
- Goal: schedule all to minimize \max lateness $L=\max \ell_{j}$.

Ex:

Greedy template. Consider jobs in some order.
[Shortest processing time first]
Consider jobs in ascending order of processing time t_{j}.
[Earliest deadline first]
Consider jobs in ascending order of deadline d_{j}.
[Smallest slack]
Consider jobs in ascending order of slack $\mathrm{d}_{\mathrm{j}}-\mathrm{t}_{\mathrm{j}}$.

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.
[Shortest processing time first] Consider in ascending order of processing time t_{j}.

[Smallest slack] Consider in ascending order of slack $\mathrm{d}_{\mathrm{j}}-\mathrm{t}_{\mathrm{j}}$.

counterexample

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

```
Sort \(n\) jobs by deadine so that \(d_{1} \leq d_{2} \leq \ldots \leq d_{n}\)
\(t \leftarrow 0\)
for \(\mathrm{j}=1\) to n
    // Assign job \(j\) to interval [ \(t, t+t_{j}\) ]:
    \(\mathbf{s}_{\mathrm{j}} \leftarrow \mathrm{t}_{\mathrm{f}}, \mathbf{f}_{\mathrm{j}} \leftarrow \mathbf{t}+\mathrm{t}_{\mathrm{j}}\)
    \(t \leftarrow t+t_{j}\)
output intervals \(\left[\mathbf{s}_{\mathbf{j}}, \mathbf{f}_{\mathrm{j}}\right.\) ]
```

	l	2	3	4	5	6
t_{i}	3	2	1	4	3	2
$\mathrm{~d}_{\mathrm{j}}$	6	8	9	9	14	15

	$d_{1}=6$			$d_{2}=8$	$d_{3}=9$		$\mathrm{d}_{4}=9$				$d_{5}=14$			$d_{6}=15$	
0	1	2	3	4	5	6	7	8	9	$\begin{gathered} 10 \\ \uparrow \end{gathered}$	11	12	13	14	15

\max lateness $=1$

Proof Strategy

A schedule is an ordered list of jobs
Suppose $S_{\text {I }}$ is any schedule

Let G be the/a schedule produced by the greedy algorithm
To show: Lateness $\left(\mathrm{S}_{\mathrm{I}}\right) \geq$ Lateness(G)

Idea: find a series of simple changes that successively transform S_{1} into other schedules that are more and more like G, each better than the last, until we reach G. I.e.

$$
\text { Lateness }\left(\mathrm{S}_{1}\right) \geq \text { Lateness }\left(\mathrm{S}_{2}\right) \geq \text { Lateness }\left(\mathrm{S}_{3}\right) \geq \ldots \geq \text { Lateness }(\mathrm{G})
$$

If it works for any starting S_{1}, it will work for an optimal S_{1}, so G is optimal
HOW?: exchange pairs of jobs

Minimizing Lateness: No Idle Time

Notes:

I. There is an optimal schedule with no idle time.

2. The greedy schedule has no idle time.

Def. An inversion in schedule S is a pair of jobs i and j s.t.: deadline i < deadline j but j scheduled before i.

- Greedy schedule has no inversions.
- Claim: If a schedule has an inversion, it has an adjacent inversion, i.e., a pair of inverted jobs scheduled consecutively.
(Pf: If $j \& i$ aren't consecutive, then look at the job k scheduled right after j. If $d_{k}<d_{j}$, then (j, k) is a consecutive inversion; if not, then (k, i) is an inversion, \& nearer to each other - repeat.)

Def. An inversion in schedule S is a pair of jobs i and j s.t.: deadline i < deadline j but j scheduled before i.

- Claim: Swapping an adjacent inversion reduces \# inversions by I (exactly)

Pf: Let i, j be an adjacent inversion. For any pair (p, q), inversion status of (p, q) is unchanged by $i \leftrightarrow j$ swap unless $\{p, q\}=\{i, j\}$, and the I, j inversion is removed by that swap.

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j s.t.: deadline i < j but j scheduled before i.

Claim. Swapping two adjacent, inverted jobs does not increase the max lateness.

Pf. Let ℓ / ℓ^{\prime} be the lateness before / after swap, resp.

- $\ell_{\mathrm{k}}^{\prime}=\ell_{\mathrm{k}}$ for all $\mathrm{k} \neq \mathrm{i}, \mathrm{j}$
- $\ell_{i}^{\prime} \leq \ell_{\mathrm{i}} \quad \ell_{j}^{\prime}=f_{j}^{\prime}-d_{j} \quad$ (definition)
- If job j is now late:

$$
\begin{array}{ll}
=f_{i}-d_{j} & \left(j \text { finishes at time } f_{i}\right) \\
\leq f_{i}-d_{i} & \left(d_{i} \leq d_{j}\right) \\
=\ell_{i} & (\text { definition })
\end{array}
$$

only j moves later, but it's no later than i was, so max not increased

Claim. All idle-free, inversion-free schedules S have the same max lateness.

Pf. If S has no inversions, then deadlines of scheduled jobs are monotonically nondecreasing (i.e., increase or stay the same) as we walk through the schedule from left to right. Two such schedules can differ only in the order of jobs with the same deadlines. Within a group of jobs with the same deadline, the max lateness is the lateness of the last job in the group order within the group doesn't matter.


```
Minimizing Lateness: Correctness of Greedy Algorithm
```

Theorem. Greedy schedule S is optimal
Pf. Let S^{*} be an optimal schedule with the fewest number of inversions among all optimal schedules

Can assume S* * has no idle time.
If S^{*} has an inversion, let i-j be an adjacent inversion
Swapping i and j does not increase the maximum lateness
and strictly decreases the number of inversions
This contradicts definition of S^{*}
So, S^{*} has no inversions. Hence Lateness $(S)=$ Lateness $\left(S^{*}\right)$

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as "good" as any other algorithm's. (Part of the cleverness is deciding what's "good.")

Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound. (Cleverness here is usually in finding a useful structural characteristic.)

Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality. (Cleverness usually in choosing which pair to swap.)
(In all 3 cases, proving these claims may require cleverness.)

4.4 Shortest Paths in a Graph

You've seen this in prerequisite courses, so this section and next two on min spanning tree are review. I won't lecture on them, but you should review the material. Both, but especially shortest paths, are common problems, having many applications.

Shortest Path Problem

Shortest path network.

- Directed graph G = (V, E).
- Source s, destination t.
- Length $\ell_{\mathrm{e}}=$ length of edge e.

Shortest path problem: find shortest directed path from sto t.
cost of path = sum of edge costs in path

Cost of path s-2-3-5-t
$=9+23+2+16$
$=48$.

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S=\{s\}, d(s)=0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e},
$$

add v to S, and set $d(v)=\pi(v)$.

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S=\{s\}, d(s)=0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e},
$$

add v to S, and set $d(v)=\pi(v)$.

