CSE 4I7: Algorithms and Computational Complexity

Lecture 2: Analysis

Larry Ruzzo

Why big-O: measuring algorithm efficiency
What's big-O: definition and related concepts
Reasoning with big-O: examples \& applications
polynomials
exponentials
logarithms
sums
Polynomial Time

Why big-O: measuring algorithm efficiency

Our correct TSP algorithm was incredibly slow
No matter what computer you have
As a $2^{\text {nd }}$ example, for large problems, mergesort beats insertion sort $-\mathrm{n} \log \mathrm{n}$ vs n^{2} matters a lot

Even tho the alg is more complex \& inner loop slower
No matter what computer you have
We want a general theory of "efficiency" that is
Simple
Objective
Relatively independent of changing technology
Measures algorithm, not code
But still predictive - "theoretically bad" algorithms should be bad in practice and vice versa (usually)
"Runs fast on typical real problem instances"

Pro:
sensible, bottom-line-oriented

Con:
moving target (diff computers, compilers, Moore's law)
highly subjective (how fast is "fast"? What's "typical"?)

defining efficiency

"Runs fast on a specific suite of benchmarks"

Pro:
again sensible, bottom-line-oriented

Con:
all the problems above
are benchmarks representative
algorithms can be "tuned" to the well-known benchmarks
generating/maintaining benchmarks is a burden benchmarking a new algorithm is a lot of work

defining efficiency

Instead:

a) Give up on detailed timing, focus on scaling Nanoseconds matter of course, but we often want to push to bigger problems tomorrow than we can solve today, so an algorithm that scales as n^{2}, say, will very likely beat one that grows as 2^{n} or n^{10} or even n^{3}, even if the later uses fewer nanoseconds for today's n.
b) Give up on "typical," focus on worst case behavior Over all inputs of size n, how fast are we on the worst? Removes all debate about "typical" / "average."
Overall, these yield a big win in terms of technology independence, ease of analysis, robustness

The time complexity of an algorithm associates a number $T(n)$, the worst-case time the algorithm takes, with each problem size n.

Mathematically,

$\mathrm{T}: \mathrm{N}+\rightarrow \mathrm{R}$
i.e., T is a function mapping positive integers (problem sizes) to positive real numbers (number of steps).
"Reals" so, e.g., we can say sqrt(n) instead of $\lceil\operatorname{sqrt}(n)\rceil$
"Positive" so, e.g., $\log (n)$ and $2 n / n$ aren't problematic

Appropriate for time-critical applications
E.g. avionics, nuclear reactors

Unlike Average-Case, no debate about what the right definition is

If worst 》 average, then (a) alg is doing something pretty subtle, \& (b) are hard instances really that rare?
Analysis often much easier
Result is often representative of "typical" problem instances
Of course there are exceptions...

computational complexity: general goals

Asymptotic growth rate, i.e., characterize growth rate of worst-case run time as a function of problem size, up to a constant factor, e.g. $T(n)=O\left(n^{2}\right)$

Why not try to be more precise?
Average-case, e.g., is hard to define, analyze
Technological variations (computer, compiler, OS, ...) easily 10x or more
Being more precise is much more work
A key question is "scale up": if I can afford this today, how much longer will it take when my business is $2 x$ larger? (E.g. today: cn^{2}, next year: $\mathrm{c}(2 \mathrm{n})^{2}=4 \mathrm{cn}^{2}: 4 \times$ longer.) Big-O analysis is adequate to address this.

What's big-O: definition and related concepts

Given two functions f and $g: N+R$

$f(n)$ is $O(g(n))$ iff there is a constant $c>0$ so that $f(n)$ is eventually always $\leq c g(n)$
$\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ iff there is a constant $\mathrm{c}>0$ so that $f(n)$ is eventually always $\geq c g(n)$

Upper
Bounds

Lower
Bounds
$f(n)$ is $\Theta(g(n))$ iff there is are constants $c_{1}, c_{2}>0$ so that Both eventually always $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
"Eventually always $P(n)$ " means " $\exists n_{0}$ s.t. $\forall n>n_{0} P(n)$ is true." l.e., there can be exceptions, but only for finitely many "small" values of n.

Reasoning with big-O: examples \& applications

polynomials
exponentials
logarithms
sums

Show $10 n^{2}-16 n+100$ is $O\left(n^{2}\right)$:
$10 n^{2}-16 n+100 \leq 10 n^{2}+100$
$=10 n^{2}+10^{2}$
$\leq 10 n^{2}+\mathrm{n}^{2}=11 \mathrm{n}^{2}$ for all $\mathrm{n} \geq 10$

Show $10 n^{2}-16 n+100$ is $\Omega\left(n^{2}\right)$: $10 n^{2}-16 n+100 \geq 10 n^{2}-16 n$

$$
\geq 10 n^{2}-n^{2}=9 n^{2} \text { for all } n \geq 16
$$

$\therefore \Omega\left(\mathrm{n}^{2}\right)$ [and also $\Omega(\mathrm{n}), \Omega\left(\mathrm{n}^{1.5}\right), \ldots$]

Polynomials:

$$
P(n)=a_{0}+a_{1} n+\ldots+a_{d} n^{d} \text { is } \Theta\left(n^{d}\right) \text { if } a_{d}>0
$$

Proof:

$$
\begin{aligned}
p(n) & =a_{0}+a_{1} n+\ldots+a_{d} n^{d} \\
& \leq\left|a_{0}\right|+\left|a_{1}\right| n+\ldots+a_{d} n^{d} \\
& \leq\left|a_{0}\right| n^{d}+\left|a_{1}\right| n^{d}+\ldots+a_{d} n^{d} \quad(\text { for } n \geq 1) \\
& =c n^{d}, \text { where } c=\left(\left|a_{0}\right|+\left|a_{1}\right|+\ldots+\left|a_{d-1}\right|+a_{d}\right)
\end{aligned}
$$

$\therefore \mathrm{p}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$
Exercise: show that $p(n)=\Omega\left(n^{d}\right)$ Hint: this direction is trickier; focus on the "worst case" where all coefficients except a_{d} are negative.

another example of working with $O-\Omega-\Theta$ notation

Example: For any a, and any b>0, $(n+a)^{b}$ is $\Theta\left(n^{b}\right)$

$$
\begin{aligned}
& \begin{array}{l}
(n+a)^{b} \leq(2 n)^{b} \\
\quad=2^{b} n^{b} \\
\quad=n^{b}
\end{array} \text { for } n \geq|a| \\
& \text { so }(n+a)^{b} \text { is } O\left(n^{b}\right)
\end{aligned} \begin{aligned}
& \text { for } c=2^{b} \\
& \begin{array}{l}
(n+a)^{b} \geq(n / 2)^{b} \quad \text { for } n \geq 2|a| \quad(\text { even if } a<0) \\
\quad=2^{-b} n^{b} \\
\quad=c^{\prime} n \\
\text { so }(n+a)^{b} \text { is } \Omega\left(n^{b}\right)
\end{array}
\end{aligned}
$$

Example: $\sum_{1 \leq i \leq n} i=\Theta\left(n^{2}\right)$

Proof:

(a) An upper bound: each term is \leq the max term

$$
\sum_{1 \leq i \leq n} i \leq \sum_{1 \leq i \leq n} n=n^{2}=O\left(n^{2}\right)
$$

(b) A lower bound: each term is \geq the min term

$$
\sum_{1 \leq i \leq n} i \geq \sum_{1 \leq i \leq n} I=n=\Omega(n)
$$

This is valid, but a weak bound. Better: pick a large subset of large terms

$$
\sum_{l \leq i \leq n} i \geq \sum_{n / 2 \leq i \leq n} n / 2 \geq\lfloor n / 2\rfloor^{2}=\Omega\left(n^{2}\right)
$$

Transitivity.

$$
\begin{aligned}
& \text { If } f=O(g) \text { and } g=O(h) \text { then } f=O(h) . \\
& \text { If } f=\Omega(g) \text { and } g=\Omega(h) \text { then } f=\Omega(h) . \\
& \text { If } f=\Theta(g) \text { and } g=\Theta(h) \text { then } f=\Theta(h) .
\end{aligned}
$$

Additivity.
If $f=O(h)$ and $g=O(h)$ then $f+g=O(h)$.
If $f=\Omega(\mathrm{h})$ and $\mathrm{g}=\Omega(\mathrm{h})$ then $\mathrm{f}+\mathrm{g}=\Omega(\mathrm{h})$.
If $f=\Theta(h)$ and $g=O(h)$ then $f+g=\Theta(h)$.

Proofs are left as exercises.

polynomial vs exponential

For all $r>\mid$ (no matter how small) and all $d>0$, (no matter how large) $n^{d}=O\left(r^{n}\right)$

In short, every exponential grows faster than every polynomial!
(To prove this, use calculus tricks like L'Hospital's rule.)

Example: For any $a, b>1 \quad \log _{a} n$ is $\Theta\left(\log _{b} n\right)$

$$
\begin{aligned}
& \log _{a} b=x \text { means } a^{x}=b \\
& a^{\log _{a} b}=b \\
& \left(a^{\log _{a} b}\right)^{\log _{b} n}=b^{\log _{b} n}=n \\
& \left(\log _{a} b\right)\left(\log _{b} n\right)=\log _{a} n \\
& c \log _{b} n=\log _{a} n \text { for the constant } \mathrm{c}=\log _{a} b \\
& \text { So : } \\
& \log _{b} n=\Theta\left(\log _{a} n\right)=\Theta(\log n)
\end{aligned}
$$

Corollary: base of a log factor is usually irrelevant, asymptotically. E.g." $O(n \log n)$ " $\left[\right.$ but $\left.n^{\log _{2} 8} \neq O\left(n^{\log _{8} 8}\right)\right]$

polynomial vs logarithm

Logarithms:

For all $\mathrm{x}>0$, (no matter how small) $\log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$
log grows slower than every polynomial

big-theta, etc. are not always "nice"

$f(n)=\left\{\begin{array}{cc}n^{2}, & n \text { even } \\ n, & n \text { odd }\end{array}\right\}$
$f(n) \neq \Theta\left(n^{a}\right)$ for any a.
Fortunately, such nasty cases are rare

$n \log n \neq \Theta\left(n^{a}\right)$ for any a, either, but at least it's simpler.

Polynomial Time

P: The set of problems solvable by algorithms with running time $O\left(n^{d}\right)$ for some constant d (d is a constant independent of the input size n)

Nice scaling property: there is a constant c s.t. doubling n , time increases only by a factor of c .

$$
\text { (E.g., c ~ ~ }{ }^{\mathrm{d}} \text {) }
$$

Contrast with exponential: For any constant c, there is a d such that $n \rightarrow n+d$ increases time by a factor of more than c .

$$
\text { (E.g., } c=100 \text { and } d=7 \text { for } 2^{n} \text { vs } 2^{n+7} \text {) }
$$

why it matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	n	$n \log _{2} n$	n^{2}	n^{3}	$1.5{ }^{n}$	2^{n}	n !
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long
not only get very big, but do so abruptly, which likely yields erratic performance on small instances							

Next year's computer will be $2 x$ faster. If I can solve problem of size n_{0} today, how large a problem can I solve in the same time next year?

Complexity	Size Increase	E.g.T=1012		
$\mathrm{O}(\mathrm{n})$	$\mathrm{n}_{0} \rightarrow 2 \mathrm{n}_{0}$	10^{12}	\rightarrow	2×10^{12}
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{n}_{0} \rightarrow \sqrt{ } 2 \mathrm{n}_{0}$	10^{6}	\rightarrow	1.4×10^{6}
$\mathrm{O}\left(\mathrm{n}^{3}\right)$	$\mathrm{n}_{0} \rightarrow \sqrt[3]{ } 2 \mathrm{n}_{0}$	10^{4}	\rightarrow	1.25×10^{4}
$2^{\mathrm{n} / 10}$	$n_{0} \rightarrow \mathrm{n}_{0}+10$	400	\rightarrow	410
2^{n}	$\mathrm{n}_{0} \rightarrow \mathrm{n}_{0}+1$	40	\rightarrow	4 I

Point is not that n^{2000} is a nice time bound, or that the differences among n and $2 n$ and n^{2} are negligible.

Rather, simple theoretical tools may not easily capture such differences, whereas exponentials are qualitatively different from polynomials, so more amenable to theoretical analysis.
"My problem is in P " is a starting point for a more detailed analysis
"My problem is not in P" may suggest that you need to shift to a more tractable variant, or otherwise readjust expectations

Summary

Typical initial goal for algorithm analysis is to find a reasonably tight
asymptotic
bound on
worst case running time
as a function of problem size
This is rarely the last word, but often helps separate good algorithms from blatantly poor ones - so you can concentrate on the good ones!

