
CSE 417, Winter 2012���
���

P, NP, and Intractability	

Ben Birnbaum	

Widad Machmouchi	

1	

Slides adapted from Larry
Ruzzo and Kevin Wayne !

2

The Simpson's: P = NP?

Copyright © 1990, Matt Groening

3

Looking for a Job?

Some writers for the Simpsons and Futurama.
  J. Steward Burns. M.S. in mathematics, Berkeley, 1993.
  David X. Cohen. M.S. in computer science, Berkeley, 1992.
  Al Jean. B.S. in mathematics, Harvard, 1981.
  Ken Keeler. Ph.D. in applied mathematics, Harvard, 1990.
  Jeff Westbrook. Ph.D. in computer science, Princeton, 1989.

What can we feasibly compute?	

Focus so far in the course has been to give
good algorithms for specific problems (and
general techniques that help do this).	

	

Now shifting focus to problems where we
think this is impossible.	

4	

Overview	

Researchers found many problems with obvious
exponential solutions, but no polynomial time algorithm
known.	

Eventually, researchers gave up and started trying to prove
that it was impossible to solve these problems efficiently.	

Didn’t quite succeed here either.	

However, they did develop a beautiful theory that allows

us to show that many problems “probably” can’t be
solved efficiently.	

5	

Theory of NP-Completeness	

Our goals	

1.  Explain how this theory works.	

2.  Show how to use it to prove a problem is

“probably” not solvable in polynomial
time.	

This is the most theoretical part of the
course, but it is very important.	

6	

7	

Polynomial versus exponential	

Polynomial	

	

	

Bigger than polynomial	

	

	

8	

22n

2n/10

1000n2

22n!

2n/10!

1000n2!

Polynomial vs ���
Exponential Growth	

 	

9	

Complexity Increase E.g. T=1012

O(n) n0 à 2n0 1012 2 x 1012

O(n2) n0 à √2 n0 106 1.4 x 106

O(n3) n0 à 3√2 n0 104 1.25 x 104

2n /10 n0 à n0+10 400 410
2n n0 à n0 +1 40 41

Another view of Poly vs Exp	

Next year's computer will be 2x faster. If I can
solve problem of size n0 today, how large a problem
can I solve in the same time next year? 	

	

Polynomial versus exponential	

Of course there are exceptions:	

n100 is bigger than (1.001)n for most practical values of n
but usually such run-times don’t show up	

There are algorithms that have run-times like O(2sqrt(n)/22)
and these may be useful for small input sizes, but they're
not too common either	

	

10	

11	

Decision problems	

Computational complexity usually analyzed using
decision problems: answer just YES or NO (1 or 0) 	

	

Example: “Find the minimum spanning tree” è
“Is there a spanning tree of size ≤ k?”	

	

Why?	

Much simpler to deal with	

Deciding whether G has a k-clique is certainly no harder than
finding a k-clique in G or finding the size of the maximum k-
clique. So proving decision problem is hard is a strong result.	

Less important, but if you have a good decider, you can often
use it to get a good finder. 	

12	

Some Decision Problems	

Independent-Set: 	

Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| ≥ k such that ���
no two vertices in U are joined by an edge.	

	

Clique: 	

Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| ≥ k such that
every pair of vertices in U is joined by an edge.	

13	

"Problem" – the general case	

Ex: The Clique Problem: Given a graph G and an integer
k, does G contain a k-clique?	

"Problem Instance" – the specific cases	

Ex: Does contain a 4-clique? This is a “NO
instance”	

	

Ex: Does contain a 3-clique? This is a “YES
instance”	

Some Terminology	

14	

The class P	

Definition: P = set of (decision) problems solvable
by computers in polynomial time. i.e.,	

	

T(n) = O(nk) for some fixed k (indp of input).	

These problems are sometimes called tractable
problems.	

	

Examples: shortest path, MST, connectivity, interval
scheduling, dynamic programming – most of this
quarter	

	

15	

Beyond P?	

There are many natural, practical problems for
which we don’t know any polynomial-time
algorithms	

16	

Some Examples	

Independent-Set: 	

Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| ≥ k such that ���
no two vertices in U are joined by an edge.	

	

Clique: 	

Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| ≥ k such that
every pair of vertices in U is joined by an edge.	

Some Examples	

17	

Vertex-Cover: 	

Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| ≤ k such that
every edge touches a vertex in U. 	

	

	

Some Examples	

18	

Hamiltonian Cycle:	

Given a graph G = (V, E), is there a cycle that
visits each node exactly once?	

	

Some Examples	

19	

Hamiltonian Cycle:	

Given a graph G = (V, E), is there a cycle that
visits each node exactly once?	

	

YES	

 NO	

Some Examples	

Traveling Salesperson Problem: 	

Given a weighted graph G=(V,E,w) and an integer k, is
there a Hamiltonian cycle with total weight ≤ k?	

	

	

20	

21

Traveling Salesperson Problem

  TSP. Given a weighted graph G=(V,E,w) and an integer k, is there a
Hamiltonian cycle with total weight ≤ k?	

All 13,509 cities in US with a population of at least 500
Reference: http://www.tsp.gatech.edu

22

Traveling Salesperson Problem

  TSP. Given a weighted graph G=(V,E,w) and an integer k, is there a
Hamiltonian cycle with total weight ≤ k?	

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

23	

Satisfiability – Boolean Formulas	

Boolean variables x1, ..., xn	

taking values in {0,1}. 0=false, 1=true	

Literals	

xi or ¬xi for i = 1, ..., n	

Clause	

a logical OR of one or more literals	

e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)	

CNF formula (“conjunctive normal form”)	

a logical AND of a bunch of clauses	

24	

Satisfiability	

CNF formula example	

(x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4)	

If there is some assignment of 0’s and 1’s to the
variables that makes it true then we say the formula
is satisfiable	

the one above is, the following isn’t	

x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3���
	

Satisfiability: Given a CNF formula F, is it satisfiable?	

25	

Satisfiable?	

(

 x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

 (

 ¬x	

 ∨	

 y	

 ∨	

 ¬z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

 (

 ¬x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

(

 ¬x	

 ∨	

 ¬y	

 ∨	

 ¬z	

)	

 ∧	

 (

 x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

 (

 x	

 ∨	

 y	

 ∨	

 ¬z	

)	

(

 x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

 (

 ¬x	

 ∨	

 y	

 ∨	

 ¬z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 ¬z	

)	

 ∧	

 (

 ¬x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

(

 ¬x	

 ∨	

 ¬y	

 ∨	

 ¬z	

)	

 ∧	

 (

 ¬x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

 (

 x	

 ∨	

 y	

 ∨	

 ¬z	

)	

26	

History – As of 1970	

Many of the above problems had been
studied for decades.	

All had real, practical applications.	

None were known to be in P. Exponential
algorithms were the best known.	

	

It turns out they all have a very deep
similarity under the skin. They all belong to a
class of problems called NP.	

NP: problems with ���
efficient verifiers	

Verification algorithm intuition:	

Verifier views things from "managerial" viewpoint.	

Verifier doesn't determine whether a problem
instance is YES on its own. 	

Rather, it checks a proposed proof (certificate) that
an instance is YES.	

	

NP stands for nondeterministic polynomial time	

	

27	

28	

The complexity class NP	

NP consists of all decision problems where 	

	

You can verify the YES answers efficiently (in polynomial
time) given a short (polynomial-size) certificate	

	

And	

	

No certificate can fool your polynomial time verifier into
saying YES for a NO instance	

	

29	

Precise Definition of NP	

A decision problem is in NP iff there is a
polynomial time procedure v(-,-), and an
integer k such that 	

for every YES problem instance x there is a
certificate h with |h| ≤ |x|k such that v(x,h) = YES ���
and	

for every NO problem instance x there is no
certificate h with |h| ≤ |x|k such that v(x,h) = YES	

30	

Example: CLIQUE is in NP	

procedure v(x,h)	

if 	

	

x represents a graph G and h represents a set of	

	

vertices U.	

and 	

	

there is an edge in G between each pair of	

	

vertices in U	

then output YES	

else output NOT CONVINCED	

31	

Is it correct?	

For every x = (G,k) such that G contains a k-clique,
there is a certificate h that will cause v(x,h) to say
YES, namely h = a list of the vertices in such a k-
clique	

and	

No certificate can fool v into saying yes if either x
isn't well-formed (the uninteresting case) or if x =
(G,k) but G does not have any cliques of size k (the
interesting case)	

32	

Another example: SAT ∈ NP	

Certificate: the satisfying assignment A	

Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)	

Syntax: True iff F is a well-formed formula & A is a
truth-assignment to its variables	

Satisfies: plug A into F and evaluate	

Correctness:	

If F is satisfiable, it has some satisfying assignment A, and
we’ll recognize it	

If F is unsatisfiable, it doesn’t, and we won’t be fooled	

33	

Keys to showing that ���
a problem is in NP	

What's the output? (must be YES/NO)	

First, describe the certificate and verifier.	

Second, for every YES instance, show that
there is a certificate that would cause the
verifier to output YES in polynomial time.	

Third, for every NO instance, show that there
is no certificate that would cause the verifier to
output YES, i.e. the verifier can’t be tricked.	

Another Example: ���
Hamiltonian Cycle ∈ NP	

Certificate: a list of the vertices in the cycle	

Verifier: check that inputs are well-formed, that

there is an edge between each of the vertices in
certificate, and that every vertex appears exactly
once.	

Correctness: ���
If YES instance: then there is a certificate
corresponding to a Hamiltonian cycle, and verifier
outputs YES in polynomial time. ���
If NO instance: no certificate will fool the verifier.	

	

	

34	

Are all problems in NP?	

No, think about Tautology: given a boolean
formula, decide whether it is always true.	

	

Not clear what a certificate would look like.	

How would one efficiently show (or check)

that all assignments evaluate to true?	

35	

Review	

•  Described move from optimization to
decision problems	

•  Described complexity class P	

•  Described complexity class NP	

•  Showed that a bunch of problems are in

NP	

•  Next up: NP – who cares?	

•  In the book: 8.3 -> 8.1 -> 8.2 -> 8.4	

36	

P vs. NP	

If a problem is in P, then we can construct a
verifier that ignores the certificate and just
solves the problem.	

This verifier satisfies our requirements for
being in NP.	

Thus,	

37	

P ⊆ NP

Example: Graph Connectivity	

Graph-Connectivity: Is graph G = (V, E)
connected?	

Certificate: “”	

Verifier: Ignore certificate. Run BFS (or DFS)

to determine if graph is connected. If so,
output YES. Else, output NOT
CONVINCED.	

38	

Proving Connectivity is in NP	

First, for every YES instance, the verifier
outputs YES given the certificate “”	

Second, for every NO instance, the verifier
will never output YES, no matter what the
certificate is.	

So Graph-Connectivity is in NP.	

This works for any problem in P. 	

Hence, 	

39	

P ⊆ NP

40	

NP = Polynomial-time
verifiable!

!
P = Polynomial-time

solvable!
!
 !
	

Complexity Classes	

P

NP

P ⊆ NP

P vs. NP	

But does P = NP?	

How would we answer this question?	

•  Yes: provide a polynomial time algorithm

for every problem in NP	

•  No: find just one problem in NP and prove

there is no polynomial time algorithm for
it	

Doing either of these is worth $1M	

41	

NP-complete: the “hardest” problems in NP	

	

As long as P ≠ NP (seems likely), there is no
polynomial time algorithm for any NP-
complete problem	

	

We can show that lots of problems are NP-

complete	

42	

SAT, Clique, Vertex Cover, Independent Set, TSP, etc.	

But a beautiful theory was developed	

But a beautiful theory was developed	

NP-complete: the “hardest” problems in NP	

	

What does it mean for one problem to be

harder than another? Before defining NP-
complete, we need to define this:	

	

Polynomial-Time Reductions	

	

	

	

	

43	

44	

Reductions: a useful tool	

Intuitive Definition: To reduce A to B means to solve
A, given a “black box” subroutine solving B.	

	

Reducing MEDIAN to SORT	

45	

“Black Box”	

algorithm for sort	

Input: list of 	

numbers	

Output:	

median	

Call sort alg	

 Output item n/2	

Since we can use alg for SORT to solve MEDIAN,	

SORT is “at least as hard” as MEDIAN	

Algorithm for MEDIAN	

46	

More reductions	

Example: reduce MEDIAN to SORT	

Solution: sort, then select (n/2)nd	

Example: reduce SORT to FIND_MAX	

Solution: FIND_MAX, remove it, repeat	

Example: reduce MEDIAN to FIND_MAX	

Solution: transitivity: compose solutions above.	

Interlude: some notation	

Let A be a problem and x be an input to A.	

	

If x is a YES instance, we write x ∈ A	

If x is a NO instance, we write x ∉ A	

	

Comes from a more formal treatment of this

material, in which problems can be thought
of as sets of strings.	

	

 47	

If you want to learn more…	

48	

49	

Polynomial-Time Reductions	

Let A and B be two problems.	

We say that A is polynomially reducible to B (A ≤p B)
if there exists a polynomial-time algorithm f that
converts each instance x of problem A to an
instance f(x) of B such that: ���
	

x is a YES instance of A iff f(x) is a YES instance of B	

	

x ∈ A ⇔ f(x) ∈ B 	

Sometimes the direction of this
inequality confuses people

50	

Why ≤p notation?	

Define: A ≤p B “A is polynomial-time reducible to
B”, iff there is a polynomial-time computable
function f such that: x ∈ A ⇔ f(x) ∈ B 	

	

“complexity of A” ≤ “complexity of B” + “complexity of f”	

51	

A ≤p B pictorially	

Algorithm
to compute f

x Algorithm
to solve B

f(x) f(x) ∈ B? x ∈ A?

Algorithm to solve A

52

Example: Vertex Cover ≤P Set Cover

SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sm of
subsets of U, and an integer k, does there exist a collection of ≤ k of
these sets whose union is equal to U (i.e. that cover U)?

Ex:

Sample application.
  m available pieces of software.
  Set U of n capabilities that we would like our system to have.
  The i-th piece of software provides the set Si ⊆ U of capabilities.
  Goal: achieve all n capabilities using fewest pieces of software.

U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }
k = 3
S1 = {1, 7, 8, 9} S4 = {2, 4, 9}
S2 = {3, 4, 5, 6} S5 = {5, 8}
S3 = {1} S6 = {1, 2, 6, 7}

Example: Vertex Cover ≤P Set Cover

Vertex Cover ≤ P Set Cover because Set Cover is a generalization of
Vertex Cover

53

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

a

d

b

e

f c

VERTEX COVER

k = 2
e1

e2 e3

e5

e4

e6

e7

f(x)

54

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Example: Vertex Cover ≤P Set Cover

Claim. Vertex Cover ≤ P Set Cover.
Pf. Given a Vertex Cover instance x = (G = (V, E), k), we construct a Set
Cover instance f(x) as follows:

–  k = k, U = E, Sv = {e ∈ E : e incident to v }

f(x) can be computed in polynomial time.
x ∈ Vertex Cover iff f(x) ∈ Set Cover, because there is

 set cover of size ≤ k iff vertex cover of size ≤ k. ▪

a

d

b

e

f c

VERTEX COVER

k = 2
e1

e2 e3

e5

e4

e6

e7

Why do we care about reductions?	

We’ll see plenty more
reductions, but let’s
come back to the big
picture first.	

55	

56	

What does a reduction tell us?	

Observation: p(x) and q(x) polynomials, then	

	

 	

p(x) + q(x) is polynomial	

	

 	

	

	

(1) A ≤p B and B ∈ P ⇒ A ∈ P 	

(2) A ≤p B and A ∉ P ⇒ B ∉ P 	

(3) A ≤p B and B ≤p C ⇒ A ≤p C (transitivity)	

57	

Definition of NP-Completeness	

Definition: Problem B is NP-hard if every
problem in NP is polynomially reducible to B.	

	

Definition: Problem B is NP-complete if:	

(1) B belongs to NP, and 	

(2) B is NP-hard.	

58	

P = Poly-time solvable!
!
NP = Poly-time verifiable!

!
NP-Complete = “Hardest”

problems in NP	

Complexity Classes	

NP

P

NP-Complete

NP-completeness	

Cool concept, but are there ���
any such problems?	

	

Yes!	

	

Cook-Levin theorem (1971):	

SAT is NP-complete	

	

 59	

Why is SAT NP-complete?	

Proof of Cook-Levin is somewhat involved; I won’t
show it. But its essence is not so hard to grasp:	

60	

Encode “solution” using Boolean variables. SAT mimics “is there a
solution” via “is there an assignment”. Digital computers just do Boolean
logic, and “SAT” can mimic that, too, hence can verify that the assignment
actually encodes a solution.	

Generic “NP” problem:	

is there a poly size “solution,”
verifiable by computer in poly time	

“SAT”:	

is there a (poly size) assignment
satisfying the formula

61	

Proving a problem is NP-complete	

Technically, for condition (2) we have to show that
every problem in NP is reducible to B. ���
(Yikes! Sounds like a lot of work.)	

For the very first NP-complete problem (SAT) this
had to be proved directly. 	

However, once we have one NP-complete problem,
then we don’t have to do this every time.	

Why? Transitivity.	

62	

Re-stated Definition	

Lemma: Problem B is NP-complete if:	

(1) B belongs to NP, and 	

(2’) A is polynomial-time reducible to B, for some
problem A that is NP-complete.	

	

That is, to show (2’) given a new problem B, it is
sufficient to show that SAT or any other NP-
complete problem is polynomial-time reducible to
B.	

63	

Usefulness of Transitivity	

In order to show that P is NP-hard, we only have
to show P’ ≤p P for some NP-hard problem P’,
Why?	

1) Since P’ is NP-hard,	

	

 	

∀ P’’ ∈ NP, we have P’’ ≤p P’	

2) If we show P’ ≤p P, then by transitivity we ���
	

know that: ∀ P’’∈ NP, we have P’’ ≤p P.	

Thus P is NP-hard.	

64	

Ex: VertexCover is NP-complete	

SAT is NP-complete (shown by S. Cook)	

SAT ≤p VertexCover (we’ll show this later)	

VertexCover is in NP (why?)	

Therefore VertexCover is also NP-complete	

	

So, poly-time algorithm for VertexCover would give
poly-time algs for everything in NP	

NP-completeness	

Karp (1972): ���
SAT ≤p Clique, ���
SAT ≤p Vertex Cover,
SAT ≤p Ham Path, …	

	

Since, then, thousands
more problems proved
NP-complete	

65	

NP-completeness	

If there was a polynomial time algorithm for any
NP-complete problem, then P = NP.	

If at least one cannot be solved in polynomial
time, then none could.	

So either all NP-complete problems have
polynomial time algorithms, or none do. Since
no one has ever found a polynomial time
algorithm for an NP-complete problem, they
are “probably” intractable.	

66	

What’s next?	

Use polynomial time reductions to show that
a number of problems we care about are
NP-complete.	

Important to know how to do this, in order
to determine whether you should try to
solve a new problem.	

Later, we ask what do we do with all these
NP-complete problems?	

67	

Review	

We defined some useful
complexity classes.	

	

Cook-Levin Theorem:
SAT is NP-complete	

	

To prove a new problem
is NP-complete, we need
to show a chain of
reductions from SAT	

68	

NP	

P	

NP-hard	

NP-complete	

Reduction Tree	

69	

Satisfiability	

3-Satisfiability	

Independent Set	

Vertex Cover	

Set Cover	

Clique	

Hamiltonian Cycle	

TSP	

Already shown	

Won’t show	

Today	

Today	

NP-completeness proof outline	

To show a problem P is NP-complete:	

1. Show it is NP (usually easy).	

2. For a problem P’ known to be NP-complete,
show that P’ ≤p P.	

a.  Provide an algorithm (function) f for transforming input
of P’ to input of P.	

b.  Argue that f can be computed in polynomial time (usually
easy).	

c.  Show that x ∈ P’ ⇔ f(x) ∈ P.	

i.  Show that x ∈ P’ ⇒ f(x) ∈ P.	

ii.  Show that f(x) ∈ P ⇒ x ∈ P’.	

70	

71

Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ⊆ V such that |S| ≥ k, and for each edge at most
one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6? Yes.
Ex. Is there an independent set of size ≥ 7? No.

independent set

72

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ⊆ V such that |S| ≤ k, and for each edge, at least
one of its endpoints is in S?

Ex. Is there a vertex cover of size ≤ 4? Yes.
Ex. Is there a vertex cover of size ≤ 3? No.

vertex cover

Proving Vertex Cover NP-complete

Theorem: If Independent Set is NP-complete, then Vertex Cover is
NP-complete.

Proof: Vertex Cover is in NP. A certificate consists of the set of

vertices in the cover. It can be verified in polynomial time that
such a set of vertices has the required size and does cover all
edges.

To finish the proof, we will show that Independent Set ≤P Vertex
Cover.

73

74

Proving Vertex Cover NP-complete

Observation: S is an independent set iff V - S is a vertex cover.

⇒
  Let S be any independent set.
  Consider an arbitrary edge (u, v).
  S independent ⇒ u ∉ S or v ∉ S ⇒ u ∈ V - S or v ∈ V - S.
  Thus, V - S covers (u, v).

⇐
  Let V - S be any vertex cover.
  Consider two nodes u ∈ S and v ∈ S.
  Observe that (u, v) ∉ E since V - S is a vertex cover.
  Thus, no two nodes in S are joined by an edge ⇒ S independent set. ▪

Proving Vertex Cover NP-complete

Theorem: If Independent Set is NP-complete, then Vertex Cover is
NP-complete.

Proof (continued): Given an input x = (G = (V, E), k) to Independent Set,

let f(x) be the Vertex Cover input G = (V, E), n – k. Clearly, f can be
computed in polynomial time.

By our observation, x has an independent set of size ≥ k iff f(x) has
a vertex cover of size ≤ n – k. Hence x ∈ Independent Set ⇔ f(x) ∈
Vertex Cover.

75

76

Ex:

Yes: x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form: A propositional

formula Φ that is the conjunction of clauses.

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Satisfiability

€

Cj = x1 ∨ x2 ∨ x3

€

xi or xi

€

Φ = C1 ∧C2 ∧ C3∧ C4

€

x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3()

each corresponds to a different variable

77

Independent Set is NP-complete

Theorem. 3-SAT is NP-complete.
Pf. We won’t show this, but there is a reduction from SAT.

Theorem. Independent Set is NP-compete.
Pf. First, Independent Set is clearly in NP. A certificate would consist

of the list of vertices. It could be easily verified in polynomial time
that no edge has both endpoints in this list of vertices.

We now show that 3-SAT ≤P Independent Set.

78

3 Satisfiability Reduces to Independent Set

Claim. 3-SAT ≤ P INDEPENDENT-SET.
Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of

INDEPENDENT-SET that has an independent set of size k iff Φ is
satisfiable.

Construction.
  G contains 3 vertices for each clause, one for each literal.
  Connect 3 literals in a clause in a triangle.
  Connect literal to each of its negations.

€

x2

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

€

x3

€

x1

€

x1

€

x2

€

x4

€

x1

€

x2

€

x3

k = 3

G

79

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size k = |Φ| iff Φ is satisfiable.

Pf. ⇒ Let S be independent set of size k.
  S must contain exactly one vertex in each triangle.
  Set these literals to true.
  Truth assignment is consistent and all clauses are satisfied.

Pf ⇐ Given satisfying assignment, select one true literal from each
triangle. This is an independent set of size k. ▪

€

x2

€

x3

€

x1

€

x1

€

x2

€

x4

€

x1

€

x2

€

x3

k = 3

G

and any other variables in a consistent way

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

Reduction Tree	

80	

Satisfiability	

3-Satisfiability	

Independent Set	

Vertex Cover	

Set Cover	

Clique	

Hamiltonian Cycle	

TSP	

Shown	

Next	

Shown	

Shown	

81

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a
simple cycle Γ that contains every node in V.

YES

82

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a
simple cycle Γ that contains every node in V.

1

3

5

1'

3'

2

4

2'

4'

NO

83

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple
directed cycle Γ that contains every node in V?

Claim. DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G'
with 3n nodes.

v

a

b

c

d

e
vin

aout

bout

cout

din

ein

G G'

v vout

84

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT ≤ P DIR-HAM-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-
HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2n Hamiltonian cycles which
correspond in a natural way to 2n possible truth assignments.

85

3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.
  Construct G to have 2n Hamiltonian cycles.
  Intuition: traverse path i from left to right ⇔ set variable xi = 1.

s

t

3k + 3

x1

x2

x3

86

3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.
  For each clause: add a node and 6 edges.

s

t

clause node clause node 3211 VV xxxC = 3212 VV xxxC =

x1

x2

x3

Minimum-Weight Triangulation

Two triangulations of a set of five points:

Minimum Weight Triangulation Problem: Given a set of n points in the

plane, find the triangulation of minimum total weight. (Decision
version: is there a triangulation of weight <= k?)

Problem first posed in 1970s. Until 2006, “the most longstanding open

problem in computational geometry.”
Mulzer and Rote (2006): MWT is NP-hard. (Reduction from 3-SAT.)

87

Weight = 22.9 Weight = 15.7

