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CSE 417"
Introduction to Algorithms"

Winter 2009!

NP-Completeness!

(Chapter 8)!

What can we feasibly compute?!

Focus so far in the course has been to give 
good algorithms for specific problems (and 
general techniques that help do this).!

Now shifting focus to problems where we 
think this is impossible.!
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A Brief History of Ideas!

From Classical Greece, if not earlier, "logical 
thought" held to be a somewhat mystical ability!

Mid 1800's: Boolean Algebra and foundations of 
mathematical logic created possible "mechanical" 
underpinnings!

1900: David Hilbert's famous speech outlines 
program: mechanize all of mathematics? 
http://mathworld.wolfram.com/HilbertsProblems.html!

1930's: Gödel, Church, Turing, et al. prove it's 
impossible!
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More History!

1930/40's !

What is (is not) computable!

1960/70's !

What is (is not) feasibly computable!

Goal – a (largely) technology-independent theory of time 
required by algorithms!

Key modeling assumptions/approximations !

Asymptotic (Big-O), worst case is revealing!

Polynomial, exponential time – qualitatively different!
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Polynomial vs "
Exponential Growth!
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Complexity Increase E.g. T=1012 

O(n) n0 ! 2n0 1012 2  x 1012 

O(n2) n0 ! !2 n0 106         1.4  x 106 

O(n3) n0 ! 3!2 n0 104 1.25  x 104 

2n /10 n0 ! n0+10 400 410 

2n n0 ! n0 +1 40 41 

Another view of Poly vs Exp!

Next year's computer will be 2x faster.  If I can 
solve problem of size n0 today, how large a problem 

can I solve in the same time next year? !
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Polynomial versus exponential!

We’ll say any algorithm whose run-time is!
polynomial is good !

bigger than polynomial is bad!

Note – of course there are exceptions:!
n100 is bigger than (1.001)n for most practical values of n 
but usually such run-times don’t show up!

There are algorithms that have run-times like O(2sqrt(n)/22)  
and these may be useful for small input sizes, but they're 
not too common either!
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Some Algebra Problems 
(Algorithmic)!

Given positive integers a, b, c"

Question 1: does there exist a positive integer x 
such that ax = c ?!

Question 2: does there exist a positive integer x 
such that ax2 + bx = c ?"

Question 3: do there exist positive integers x and y 
such that ax2 + by = c ?!
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Some Problems!

Independent-Set: !

Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| " k such that "
no two vertices in U are joined by an edge.!

Clique: !

Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| " k such that 
every pair of vertices in U is joined by an edge.!

15!

"Problem" – the general case!
Ex: The Clique Problem: Given a graph G and an integer 
k, does G contain a k-clique?!

"Problem Instance" – the specific cases!
Ex: Does                     contain a 4-clique? (no)!

Ex: Does                     contain a 3-clique? (yes)!

Decision Problems – Just Yes/No answer!

Problems as Sets of "Yes" Instances!
Ex: CLIQUE = { (G,k) | G contains a k-clique }!

E.g., (                 , 4) #  CLIQUE!

E.g., (                 , 3) $  CLIQUE!

Some Convenient Technicalities!
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Decision problems!

Computational complexity usually analyzed using 
decision problems !

answer is just 1 or 0  (yes or no).!

Why?!
much simpler to deal with!

deciding whether G has a k-clique, is certainly no harder 
than finding a k-clique in G, so a lower bound on deciding 
is also a lower bound on finding!

Less important, but if you have a good decider, you can 
often use it to get a good finder.  (Ex.: does G still have a 
k-clique after I remove this vertex?)  ! 17!

The class P!

Definition: P = set of (decision) problems solvable 
by computers in polynomial time.  i.e.,!

!T(n) = O(nk) for some fixed k (indp of input).!

These problems are sometimes called tractable 
problems.!

Examples: sorting, shortest path, MST, connectivity, 
RNA folding & other dyn. prog. – most of this qtr!

(exceptions: Change-Making/Stamps, TSP)!
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Beyond P?!

There are many natural, practical problems for 
which we don’t know any polynomial-time 
algorithms!

e.g. CLIQUE:  !
Given an undirected graph G and an integer k, does G 
contain a k-clique?!

e.g. quadratic Diophantine equations:!
Given a, b, c $ N, % x, y $ N s.t. ax2 + by = c ?!
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Some Problems!

Independent-Set: !

Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| " k such that "
no two vertices in U are joined by an edge.!

Clique: !

Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| " k such that 
every pair of vertices in U is joined by an edge.!
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Some More Problems!

Euler Tour: !
Given a graph G=(V,E) is there a cycle traversing each 
edge once."

Hamilton Tour: !
Given a graph G=(V,E) is there a simple cycle of length |
V|, i.e., traversing each vertex once.!

TSP: !
Given a weighted graph G=(V,E,w) and an integer k, is 
there a Hamilton tour of G with total weight & k.!

Shortest Path:!

!Given a digraph G=(V,E), a pair of vertices s,t in V and an 

integer k, is there a path from s to t of length at most k?!

21!
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Satisfiability!

Boolean variables x1, ..., xn!

taking values in {0,1}.  0=false, 1=true!

Literals!
xi or ¬xi for i = 1, ..., n!

Clause!
a logical OR of one or more literals!

e.g. (x1 ' ¬x3 ' x7 ' x12)!

CNF formula (“conjunctive normal form”)!

a logical AND of a bunch of clauses!

23!

Satisfiability!

CNF formula example!

(x1 ' ¬x3 ' x7) ( (¬x1 ' ¬x4 ' x5 ' ¬x7)!

If there is some assignment of 0’s and 1’s to the 
variables that makes it true then we say the formula 
is satisfiable!

the one above is, the following isn’t!

x1 ( (¬x1 ' x2) ( (¬x2 ' x3) ( ¬x3"

Satisfiability:  Given a CNF formula F, is it satisfiable?!

24!

Satisfiable?!
(! x! '! y! '! z! )! (! (! ¬x! '! y! '! ¬z! )! (!

(! x! '! ¬y! '! z! )! (! (! ¬x! '! ¬y! '! z! )! (!

(! ¬x! '! ¬y! '! ¬z! )! (! (! x! '! y! '! z! )! (!

(! x! '! ¬y! '! z! )! (! (! x! '! y! '! ¬z! )!

(! x! '! y! '! z! )! (! (! ¬x! '! y! '! ¬z! )! (!

(! x! '! ¬y! '! ¬z! )! (! (! ¬x! '! ¬y! '! z! )! (!

(! ¬x! '! ¬y! '! ¬z! )! (! (! ¬x! '! y! '! z! )! (!

(! x! '! ¬y! '! z! )! (! (! x! '! y! '! ¬z! )!
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More History – As of 1970!

Many of the above problems had been 
studied for decades!

All had real, practical applications!

None had poly time algorithms; exponential 
was best known!

But, it turns out they all have a very deep 
similarity under the skin!
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Hamilton Tour!

3-SAT!

Max Cut!

Longest Path!

Similar pairs; seemingly 

different computationally!
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Some Problem Pairs!

Euler Tour!

2-SAT!

Min Cut!

Shortest Path!
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Common property of these problems: "
Discrete Exponential Search"

 Loosely–find a needle in a haystack!

“Answer” is literally just yes/no, but there’s always a 
somewhat more elaborate “solution” (aka “hint” or 
“certificate”) that transparently‡ justifies each “yes” 
instance (and only those) – but it’s buried in an 
exponentially large search space of potential solutions. !

‡Transparently = verifiable in polynomial time!

Example: Clique!

“Is there a k-clique in this graph?”!
any subset of k vertices might be a clique!

there are many such subsets!

I only need to find one!

if I knew where it was, I could describe it succinctly, e.g. 
"look at vertices 2,3,17,42,...", !

I'd know one if I saw one:#"yes, there are edges between 
2 & 3, 2 & 17,... so it's a k-clique”!

And if there is not a k-clique, I wouldn’t be fooled by a 
statement like “look at vertices 2,3,17,42,...”  !

28!

Example: Quad Diophantine Eqns!

“Is there an integer solution to this equation?”!

any pair of integers x & y might be a solution!

there are lots of potential pairs!

I only need to find one such pair!

if I knew a solution, I could easily describe it, e.g. "try 
x=42 and y= 321" #[A slight subtlety here: need to be sure there's a 

solution involving ints with only polynomially many digits...]!

I'd know one if I saw one:#"yes, plugging in 42 for x & 321 
for y I see ...”!

And wouldn’t be fooled by (42,341) if there’s no solution!
29!



Example: SAT!

“Is there a satisfying assignment for this Boolean 
formula?”!
any assignment might work######!

there are lots of them#####!

I only need one#####!

if I had one I could describe it succinctly,#e.g., “x1=T, x2=F, ..., xn=T"######!

I'd know one if I saw one: "yes, plugging that in, I see formula = T...”!

And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T, 

x2=F, ..., xn=F"######!

30! 32!

The complexity class NP!

NP consists of all decision problems where !

You can verify the YES answers efficiently (in polynomial 
time) given a short (polynomial-size) hint!

And!

No hint can fool your polynomial time verifier into saying 
YES for a NO instance!

(implausible for all exponential time problems)!

one among exponentially many; 

know it when you see it!

33!

Precise Definition of NP!

A decision problem is in NP iff there is a 
polynomial time procedure v(-,-), and an 
integer k such that !

for every YES problem instance x there is a hint 
h with |h| & |x|k such that v(x,h) = YES "
and!

for every NO problem instance x there is no 
hint h with |h| & |x|k such that v(x,h) = YES!

“Hints” sometimes called “Certificates”!

34!

Example: CLIQUE is in NP!

procedure v(x,h)!
if !

    x is a well-formed representation of  a graph "
    G = (V, E) and an integer k, !

and !

    h is a well-formed representation of a k-vertex "
    subset U of V, !

and !

!U is a clique in G, !

then output "YES"!

else output "I'm unconvinced" !
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Is it correct?!

For every x = (G,k) such that G contains a k-clique, 
there is a hint h that will cause v(x,h) to say YES, 
namely h = a list of the vertices in such a k-clique!

and!

No hint can fool v into saying yes if either x isn't 
well-formed (the uninteresting case) or if x = (G,k) 
but G does not have any cliques of size k (the 
interesting case)!

36!

Another example: SAT $ NP!

Hint: the satisfying assignment A!

Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)!

Syntax: True iff  F is a well-formed formula & A is a 
truth-assignment to its variables!

Satisfies: plug A into F and evaluate!

Correctness:!

If F is satisfiable, it has some satisfying assignment A, and 
we’ll recognize it!

If F is unsatisfiable, it doesn’t, and we won’t be fooled!

37!

Keys to showing  that "
a problem is in NP!

What's the output?  (must be YES/NO)!

What's the input?  Which are YES?!

For every given YES input, is there a hint that 

would help?  Is it polynomial length?!

OK if some inputs need no hint!

For any given NO input, is there a hint that 
would trick you?!

38!

NP = Polynomial-time 

verifiable!

P   = Polynomial-time 
solvable!

Complexity Classes!

P 

NP 



39!

The most obvious algorithm for most of these 
problems is brute force:!

try all possible hints; check each one to see if it works.!

Exponential time:!

2n truth assignments for n variables!

n! possible TSP tours of n vertices!

     possible k element subsets of n vertices!

etc.!

…and to date, every alg, even much less-obvious 
ones, are slow, too !

!
"

#
$
%

&

k

n

Solving NP problems without hints!

40!

nk!

2nk!

accept 

Needle  

in the  

haystack 

P vs NP vs Exponential Time!

Theorem: Every problem in 
NP can be solved 
deterministically in 
exponential time!

Proof: “hints” are only nk 
long; try all 2nk

 possibilities, 
say by backtracking.  If any 
succeed, say YES; if "
all fail, say NO.!

41!

NP!

P!

Exp!

Worse… 

P and NP!

Every problem in P is in NP!
one doesn’t even need a hint 
for problems in P so just 
ignore any hint you are given!

Every problem in NP is in 
exponential time!

I.e., P ) NP ) Exp!

We know P * Exp, so either 
P *NP, or NP * Exp (most 
likely both)!

42!

P vs NP!

Theory!

P = NP ?!

Open Problem!!

I bet against it!

Practice!
Many interesting, useful, 
natural, well-studied 
problems known to be 
NP-complete!

With rare exceptions, no 
one routinely succeeds in 
finding exact solutions to 
large, arbitrary instances!



Shortest Path!

"Is there a short path (< k) from A to B in this graph?”!

!Any path might work!

!There are lots of them!

!I only need one!

!If I knew one I could describe it succinctly,#e.g., "go from 
A to node 2, then node 42, then ... ”!

!I'd know one if I saw one:#"yes, I see there's an edge from 
A to 2 and#from 2 to 42... and the total length is < k”!

!And if there isn’t a short path, I wouldn’t be fooled by, 
e.g., "go from A to node 2, then node 42, then ... ”!

43!

Longest Path!

"Is there a long path (> k) from A to B in this graph?”!

!Any path might work!

!There are lots of them!

!I only need one!

!If I knew one I could describe it succinctly,#e.g., "go from 
A to node 2, then node 42, then ... ”!

!I'd know one if I saw one:#"yes, I see there's an edge from 
A to 2 and#from 2 to 42... and the total length is > k”!

!And if there isn’t a long path, I wouldn’t be fooled by, e.g., 
"go from A to node 2, then node 42, then ... ”!

44!

Mostly Long Paths!

“Are the majority of paths from A to B long (>k)?”!

!Any path might work!

!There are lots of them!

!I only need one!

!If I knew one I could describe it "
succinctly,#e.g., "go from A to node "
2, then node 42, then ... ”!

!I'd know one if I saw one:#"yes, I"
see an edge from A to 2 and#from "
2 to 42... and total length > k”!

!And if there isn’t a long path, I wouldn’t be fooled …!

45!

Yes!! No, this is a 
collective 

property of the 
set of all paths in 
the graph, and no 
one path 
overrules the rest!

47!

Problems in P can also be 
verified in polynomial-time!

Short Path: Given a graph G with edge lengths, is there a 
path from s to t of length & k?!

Verify: Given a purported path from s to t, is it a path, is its 
length & k?!

Small Spanning Tree: Given a weighted undirected graph 
G, is there a spanning tree of weight & k?!

Verify: Given a purported spanning tree, is it a spanning tree, is 
its weight & k?"

(But the hints aren’t really needed in these cases…)!
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NP: Summary so far!

P != “poly time solvable”!

NP != “poly time verifiable” (nondeterministic poly time solvable)!

Defined only for decision problems, but fundamentally about 
search: can cast many problems as searching for a poly size, 
poly time verifiable “solution” in a 2poly size “search space”.  !

Examples:  
is there a big clique? Space = all big subsets of  vertices; solution = 
!one subset; verify = check all edges "

is there a satisfying assignment?  Space = all assignments;"
!solution = one asgt; verify = eval formula!

Sometimes we can do that quickly (is there a small spanning 
tree?); P = NP would mean we can always do that.!

50!

Does P = NP?!

This is an open question.!

To show that P = NP, we have to show that every 
problem that belongs to NP can be solved by a 
polynomial time deterministic algorithm.  !

Would be very cool, but no one has shown this yet.!

(And it seems unlikely to be true.)!

(Also seems daunting: there are infinitely many problems in 
NP; do we have to pick them off one at a time…?)!
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NP = Poly-time verifiable!

P  = Poly-time solvable!

NP-Complete = 

“Hardest” problems in 

NP (formal defn later)!

Complexity Classes!

NP 

P 

NP-Complete 
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Reductions: a useful tool!

Definition: To reduce A to B means to solve A, 
given a subroutine solving B.!

Example: reduce MEDIAN to SORT!
Solution: sort, then select (n/2)nd!

Example: reduce SORT to FIND_MAX!
Solution: FIND_MAX, remove it, repeat!

Example: reduce MEDIAN to FIND_MAX!
Solution: transitivity: compose solutions above.!
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“complexity of A” ! “complexity of B” + “complexity of reduction” !

Reductions: Why useful!

Definition: To reduce A to B means to solve A, 
given a subroutine solving B.!

Fast algorithm for B implies fast algorithm for A!

(nearly as fast; takes some time to set up call, etc.)!

If every algorithm for A is slow, then no algorithm 
for B can be fast.!
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SAT and 3SAT!

Satisfiability:  A Boolean formula in conjunctive normal form 
(CNF) is satisfiable if there exists an assignment of 0’s and 1’s 
to its variables such that the value of the expression is 1.  !

Example:!

      S=(x ! y ! ¬z) " (¬x ! y ! z) " (¬x ! ¬y ! ¬z)!

Example above is satisfiable.  (E.g., set x=1, y=1 and z=0.)!

SAT   = the set of satisfiable CNF formulas!

3SAT = … having at most 3 literals per clause!

63!

Another NP problem: "
Vertex Cover!

Input: Undirected graph G = (V, E), integer k.!

Output: True iff there is a subset C of V of "
size & k such that every edge in E is incident to at 
least one vertex in C.!

Example: Vertex cover of size & 2.!

In NP?  Exercise!

65!

3SAT &p VertexCover !
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3SAT &p VertexCover !

67!

3SAT &p VertexCover !

68!

k=6 

3SAT &p VertexCover !

69!

k=6 

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT &p VertexCover !

(x1 ' x2 ' ¬x3) ( (x1 ' ¬x2 ' ¬x3) ( (¬x1  ' x3)!
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f                                                      =!

3-SAT Instance:!

–"Variables: x1, x2, … !

–"Literals: yi,j, 1 & i & q, 1 & j & 3!

–"Clauses: ci = yi1 ' yi2 ' yi3, 1 & i & q!

–"Formula: c = c1 ( c2 ( … ( cq!

VertexCover Instance:!

–" k = 2q!

–" G = (V, E)!

–" V = { [i,j] | 1 & i & q, 1 & j & 3 }!

–" E = { ( [i,j], [k,l] ) | i = k or yij = ¬ykl }!

3SAT &p VertexCover !

71!

k=6 

3SAT &p VertexCover !
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Correctness of “3SAT &p VertexCover”!

Summary of reduction function f:  Given formula, make graph G with one group 
per clause, one node per literal.  Connect each to all nodes in same group, plus 
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of 
clauses.  Note: f does not know whether formula is satisfiable or not; does not know if 
G has k-cover; does not try to find satisfying assignment or cover.!

Correctness:!

 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; mapping basically straightforward.  !

 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover: "
(+) Given an assignment satisfying c, pick one true literal per clause.  Add other 
2 nodes of each triangle to cover.  Show it is a cover: 2 per triangle cover triangle 
edges; only true literals (but perhaps not all true literals) uncovered, so at least 
one end of every (x, ¬x) edge is covered. "
(,) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) 
truth assignment since no (x, ¬x) pair uncovered.  It satisfies c since there is one 
uncovered node in each clause triangle (else some other clause triangle has > 1 
uncovered node, hence an uncovered edge.)!
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(x1'x2'¬x3)((x1'¬x2'¬x3)((¬x1'x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT &p VertexCover”!

Suppose we had a fast algorithm "
for VertexCover, then we could "
get a fast algorithm for 3SAT:!

Given 3-CNF formula w, build Vertex"
Cover instance y = f(w) as above, run the fast "
VC alg on y; say “YES, w is satisfiable” iff VC alg says 
“YES, y has a vertex cover of the given size”!

On the other hand, suppose no fast alg is possible 
for 3SAT, then we know none is possible for 
VertexCover either.!
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“3SAT &p VertexCover” Retrospective!

Previous slide: two suppositions!

Somewhat clumsy to have to state things that 
way.!

Alternative: abstract out the key elements, 
give it a name (“polynomial time reduction”), 
then properties like the above always hold. !

75!

Polynomial-Time Reductions!

Definition: Let A and B be two problems.!

We say that A is polynomially reducible to B (A  &p B) 
if there exists a polynomial-time algorithm f that 
converts each instance x of problem A to an 
instance f(x) of B such that:"

x is a YES instance of A  iff  f(x) is a YES instance of B!

x $ A   -   f(x) $ B !

76!

polynomial 
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Polynomial-Time Reductions (cont.)!

Define: A &p B  “A is polynomial-time reducible to 
B”, iff there is a polynomial-time computable 
function f such that:   x $ A   -   f(x) $ B !

“complexity of A” & “complexity of B” + “complexity of f”!

(1)  A &p B  and  B $ P   +   A $ P !

(2)  A &p B  and  A # P   +   B # P  !

(3)  A &p B  and  B &p C   +   A &p C  (transitivity)!

77!

Using an Algorithm for B to 
Solve A!

Algorithm  

to compute f 
x Algorithm  

to solve B 
f(x) f(x) $ B? x $ A? 

Algorithm to solve A 

“If A &p
 
B, and we can solve B in polynomial time, 

then we can solve A in polynomial time also.” 

Ex: suppose f takes O(n3) and algorithm for B takes O(n2).   

How long does the above algorithm for A take? 
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Two definitions of “A &p B”!

Book uses more general definition: “could solve A 
in poly time, if I had a poly time subroutine for B.”!

Defn on previous slides is special case where you 
only get to call the subroutine once, and must 
report its answer.!

This special case is used in ~98% of all reductions!
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Definition of NP-Completeness!

Definition: Problem B is NP-hard if every 
problem in NP is polynomially reducible to B.!

Definition: Problem B is NP-complete if:!

(1) B belongs to NP, and !

(2) B is NP-hard.!

“NP-completeness”!

Cool concept, but are there "
any such problems?!

Yes!!

Cook’s theorem: SAT is NP-complete!

80!

Why is SAT NP-complete?!

Cook’s proof is somewhat involved; I won’t show it.  
But its essence is not so hard to grasp:!

81!

Encode “solution” using Boolean variables.  SAT mimics “is there a solution” 
via “is there an assignment”.  Digital computers just do Boolean logic, and 
“SAT” can mimic that, too, hence can verify that the assignment actually 
encodes a solution.!

Generic “NP” problem:!
is there a poly size “solution,” 
verifiable by computer in poly time!

“SAT”:!
is there a (poly size) assignment 
satisfying the formula



An Example!

Again, Cook’s theorem does this for generic 
NP problems, but you can get the flavor 
from a few specific examples!

82! 83!

NP-complete problem: 3-Coloring!

Input: An undirected graph G=(V,E).!

Output: True iff there is an assignment of at most 3 
colors to the vertices in G such that no two 
adjacent vertices have the same color.!

Example:!

In NP?  Exercise!

3-Coloring &p SAT!

Given G = (V, E)!

variables ri, gi, bi for each i in V encode color!

"i # V [(ri ' gi ' bi) " !

! ! !(¬ri ' ¬gi) ( (¬gi ' ¬bi) ( (¬bi ' ¬ri)] "!

"(i,j) # E [(¬ri ' ¬rj) ( (¬gi ' ¬gj) ( (¬bi ' ¬bj)]!

84!

adj nodes - diff colors!
no node gets 2 !
every node gets a color!

Vertex cover &p SAT!

Given G = (V, E) and k!

variables xi, for each i in V encode inclusion of i in 
cover!

"(i,j) # E (xi ' xj) ( “number of True xi is & k” !

85!

every edge covered 
by one end or other!

possible in 3 CNF, but 
technically messy !
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Proving a problem is NP-complete!

Technically, for condition (2) we have to show that 
every problem in NP is reducible to B.  "
(Yikes!  Sounds like a lot of work.)!

For the very first NP-complete problem (SAT) this 
had to be proved directly. !

However, once we have one NP-complete problem, 
then we don’t have to do this every time.!

Why? Transitivity.!
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Re-stated Definition!

Lemma: Problem B is NP-complete if:!

(1)  B belongs to NP, and !

(2’) A is polynomial-time reducible to B, for some 
problem A that is NP-complete.!

That is, to show (2’) given a new problem B, it is 
sufficient to show that SAT or any other NP-
complete problem is polynomial-time reducible to 
B.!
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Usefulness of Transitivity!

Now we only have to show L’ &p L  , for some 
NP-complete problem L’, in order to show that 
L is NP-hard. Why is this equivalent?!

1) Since L’ is NP-complete, we know that L’ is "
!NP-hard.  That is:!

! !. L’’ $ NP, we have L’’ &p L’!

2) If we show L’ &p L, then by transitivity we "
!know that: . L’’$ NP, we have L’’ &p L.!

Thus L is NP-hard.!
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Ex: VertexCover is NP-complete!

3-SAT is NP-complete (shown by S. Cook)!

3-SAT &p VertexCover!

VertexCover is in NP (we showed this earlier)!

Therefore VertexCover is also NP-complete!

So, poly-time algorithm for VertexCover would give 
poly-time algs for everything in NP!
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NP-complete problem: 3-Coloring!

Input: An undirected graph G=(V,E).!

Output: True iff there is an assignment of at most 3 
colors to the vertices in G such that no two 
adjacent vertices have the same color.!

Example:!

In NP?  Exercise!
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T
!

F
!

N
!

A 3-Coloring Gadget:"

In what ways can this be 3-colored?"
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T
!

F
!

N
!

output!

inputs!

Exercise: "nd 

all colorings 

of # nodes !

A 3-Coloring Gadget:"
"Sort of an OR gate"!

if any input is T, the output can be T!

if output is T, some input must be T"
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3-SAT Instance:!

–"Variables: x1, x2, … !

–"Literals: yi,j, 1 & i & q, 1 & j & 3!

–"Clauses: ci = yi1 ' yi2 ' yi3, 1 & I & q!

–"Formula: c = c1 ( c2 ( … ( cq!

3Color Instance:!

–" G!= (V, E)!

–" 6 q + 2 n + 3 vertices!

–" 13 q + 3 n + 3 edges!

–" (See Example for details)!

3SAT &p 3Color !

f                                                      =!



x1!

¬x1!

x2!

¬x2!

T
!

F
!

N
!

 (x1 ' ¬x1 ' ¬x1) #

( #
(¬x1 ' x2 ' ¬x2)!

3SAT &p 3Color Example!

6 q + 2 n + 3 vertices          13 q + 3 n + 3 edges!
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Correctness of “3SAT &p 3Coloring”!

Summary of reduction function f:"
Given formula, make G with T-F-N triangle, 1 pair of literal nodes per variable, 2 
“or” gadgets per clause, connected as in example.  "
Note: again, f does not know or construct satisfying assignment or coloring.!

Correctness:!

 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; graph looks messy, but pattern is basically straightforward.  !

 • Show c in 3-SAT iff f(c) is 3-colorable: "
(+) Given an assignment satisfying c, color literals T/F as per assignment; can  
color “or” gadgets so output nodes are T since each clause is satisfied. "
(,) Given a 3-coloring of f(c), name colors T-N-F as in example.  All square 
nodes are T or F (since all adjacent to N).  Each variable pair (xi, ¬xi) must have 
complementary labels since they’re adjacent.  Define assignment based on colors 
of xi’s.  Clause “output” nodes must be colored T since they’re adjacent to both 
N & F.   By fact noted earlier, output can be T only if at least one input is T, 
hence it is a satisfying assignment.!
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Planar 3-Coloring is also NP-Complete!

==> 

118!

Common Errors in "
NP-completeness Proofs!

Backwards reductions!

Bipartiteness &p SAT is true, but not so useful. "
(XYZ &p SAT shows XYZ in NP, doesn’t show it’s hard.)!

Sloooow Reductions !

“Find a satisfying assignment, then output…”!

Half Reductions!

Delete dashed edges in 3Color reduction.  It’s still true 
that “c satisfiable + G is 3 colorable”, but 3-colorings 
don’t necessarily give good assignments.!
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Coping with NP-Completeness!

Is your real problem a special subcase?!
E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto  3- vs 
2-coloring!

E.g. you only need planar graphs, or degree 3 graphs, …?!

Guaranteed approximation good enough?!
E.g. Euclidean TSP within 1.5 * Opt in poly time!

Fast enough in practice (esp. if n is small), !
E.g. clever exhaustive search like backtrack, branch & 
bound, pruning!

Heuristics – usually a good approximation and/or 
usually fast! 120!
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           Example:!

!          b = 34!

NP-complete problem: TSP!

Input: An undirected graph 
G=(V,E) with integer edge 
weights, and an integer b.!

Output: YES iff there is a 
simple cycle in G passing 
through all vertices (once), 
with total cost & b.!
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! 

lim
n"#
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TSP - Nearest Neighbor 
Heuristic!

Recall NN Heuristic!

Fact: NN tour can be about (log n) x opt, i.e. "

(above example is not that bad)!
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2x Approximation to 
EuclideanTSP!

A TSP tour visits all vertices, so contains a 
spanning tree, so TSP cost is > cost of min 
spanning tree.!

Find MST!

Find “DFS” Tour!

Shortcut!

TSP & shortcut < DFST = 2 * MST < 2 * TSP!
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A problem NOT in NP; "
A bogus “proof” to the contrary!

EEXP = {(p,x) | prog p accepts input x in < 22|x|
 steps }!

NON Theorem: EEXP in NP!

!“Proof” 1: Hint = step-by-step trace of the 
computation of p on x; verify step-by-step"

!“Proof” II: Hint = a bit; accept iff it’s 1!
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NP!

P!

Exp!
Worse… 

NP-C  Summary!

Big-O    –  good!

P           –  good!

Exp       –  bad!

Exp, but hints help?  NP!

NP-hard, NP-complete – bad (I bet)!

To show NP-complete – reductions!

NP-complete = hopeless? – no, but you "
  need to lower your expectations: "
  heuristics & approximations.!


