CSE 4I7: Algorithms and
 Computational Complexity

Winter 2009
W. L. Ruzzo

Dynamic Programming, I:
Fibonacci \& Stamps

Some Algorithm Design
 Techniques, I

General overall idea
Reduce solving a problem to a smaller problem or problems of the same type
Greedy algorithms
Used when one needs to build something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away
e.g. closest pair in TSP search

Usually fast if they work (but often don't)

Dynamic Programming

Outline:
General Principles
Easy Examples - Fibonacci, Licking Stamps
Meatier examples
RNA Structure prediction
Weighted interval scheduling Maybe others

Some Algorithm Design Techniques, II

Divide \& Conquer

Reduce problem to one or more sub-problems of the same type
Typically, each sub-problem is at most a constant fraction of the size of the original problem
e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Some Algorithm Design

Techniques, III

Dynamic Programming

Give a solution of a problem using smaller sub-
problems, e.g. a recursive solution
Useful when the same sub-problems show up again and again in the solution

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Program - A plan or procedure for dealing with some matter

- Webster's New World Dictionary

A very simple case: Computing Fibonacci Numbers

Recall $F_{n}=F_{n-1}+F_{n-2}$ and $F_{0}=0, F_{1}=1$
Recursive algorithm:
Fibo(n)
if $\mathrm{n}=0$ then return (0)
else if $n=1$ then return(1)
else return(Fibo(n-I)+Fibo(n-2))

Fibonacci - Dynamic

Programming Version
FiboDP(n):
$\mathrm{F}[0] \leftarrow 0$
$\mathrm{F}[1] \leftarrow 1$
for $\mathrm{i}=2$ to n do
$\mathrm{F}[\mathrm{i}] \leftarrow \mathrm{F}[\mathrm{i}-\mathrm{I}]+\mathrm{F}[\mathrm{i}-2]$
end
return(F[n])
the same speed

Making change

Given:

Large supply of $1 \not \subset, 5 \not \subset, 10 \not \subset, 25 \not \subset, 50 \not \subset$ coins An amount N
Problem: choose fewest coins totaling N

Cashier's (greedy) algorithm works:
Give as many as possible of the next biggest denomination

Dynamic Programming

Useful when

Same recursive sub-problems occur repeatedly Parameters of these recursive calls anticipated The solution to whole problem can be solved without knowing the internal details of how the sub-problems are solved
"principle of optimality"

Licking Stamps

Given:

Large supply of $5 \not \subset, 4 \not \subset$, and 1ϕ stamps
An amount N
Problem: choose fewest stamps totaling N

How to Lick 27 ¢

\＃of $5 申$ stamps	\＃of $4 申$ stamps	\＃of I申 stamps	total number
5	0	2	7
4	1	3	8
3	3	0	6

Morals：Greed doesn＇t pay；success of＂cashier＇s alg＂ depends on coin denominations

A Simple Algorithm

At most N stamps needed，etc．
for $a=0, \ldots, N\{$ for $b=0, \ldots, N$ \｛ for $\mathrm{c}=0, \ldots, \mathrm{~N}\{$
if（ $5 \mathrm{a}+4 \mathrm{~b}+\mathrm{c}=\mathrm{N} \& \& \mathrm{a}+\mathrm{b}+\mathrm{c}$ is new min） $\{$ retain（a，b，c）；\}\}\}
output retained triple；

Time： $\mathrm{O}\left(\mathrm{N}^{3}\right)$
（Not too hard to see some optimizations，but we＇re after bigger fish．．．）

Better Idea

Theorem：If last stamp in an opt sol has value v ，then previous stamps are opt sol for $\mathrm{N}-\mathrm{v}$ ． Proof：if not，we could improve the solution for N by using opt for $\mathrm{N}-\mathrm{v}$ ． Alg：for $\mathrm{i}=\mathrm{I}$ to n ：
$M(i)=\min \left\{\begin{array}{ll}0 & i=0 \\ 1+M(i-5) & i \geq 5 \\ 1+M(i-4) & i \geq 4 \\ 1+M(i-1) & i \geq 1\end{array}\right\}$
where $M(i)=\min$ number of stamps totaling ic

New Idea：Recursion

Time：$>3^{\mathrm{N} / 5}$

Another New Idea:
 Avoid Recomputation

Tabulate values of solved subproblems
Top-down: "memoization"
Bottom up:

$$
\text { for } \mathrm{i}=0, \ldots, \mathrm{~N} \text { do } M[i]=\min \left\{\begin{array}{ll}
0 & i=0 \\
1+M[i-5] & i \geq 5 \\
1+M[i-4] & i \geq 4 \\
1+M[i-1] & i \geq 1
\end{array}\right\}
$$

Time: $\mathrm{O}(\mathrm{N})$

Finding Which Stamps:

Trace-Back

$$
\underline{\mathbf{1}}+\operatorname{Min}(3, \underline{\mathbf{1}}, 3)=\underline{\mathbf{2}}
$$

Finding How Many Stamps

$1+\operatorname{Min}(3,1,3)=2$

Trace-Back

Way I: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)
Way 2: re-compute just what's needed

```
TraceBack(i):
if i == O then return;
    for d in {1, 4, 5} do
        if M[i] == 1 + M[i - d]
        then break;
```


Complexity Note

$\mathrm{O}(\mathrm{N})$ is better than $\mathrm{O}\left(\mathrm{N}^{3}\right)$ or $\mathrm{O}\left(3^{\mathrm{N} / 5}\right)$

But still exponential in input size
($\log \mathrm{N}$ bits)
(E.g., miserable if N is 64 bits $-\mathrm{c} \cdot 2^{64}$ steps \& 2^{64} memory.)

Note: can do in $O(I)$ for $5 \not \subset, 4 \not \subset$, and $I \not \subset$ but not in general. See "NP-Completeness" later.

Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?
"Optimal Substructure"
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)
"Repeated Subproblems"
The same subproblems arise in various ways

