CSE 4I7: Algorithms and Computational Complexity

Winter 2009
Larry Ruzzo
Divide and Conquer Algorithms

HW4 - Empirical Run Times

Plot Time vs n

Fit curve to it (e.g., with Excel)
Note: Higher degree polynomials fit better...

Plotting Time/(growth rate) vs n may be more sensitive should be flat, but small n may be unrepresentative of asymptotics

The Divide and Conquer Paradigm

Outline:

General Idea
Review of Merge Sort
Why does it work?
Importance of balance
Importance of super-linear growth
Some interesting applications
Closest points
Integer Multiplication
Finding \& Solving Recurrences

Algorithm Design Techniques

Divide \& Conquer
Reduce problem to one or more sub-problems of the same type
Typically, each sub-problem is at most a constant fraction of the size of the original problem
e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Merge Sort

MS(A: array[I ..n]) returns array[I..n] \{ If($\mathrm{n}=\mathrm{I}$) return $\mathrm{A}[\mathrm{I}]$;
New U:array[1:n/2] = MS(A[1..n/2]);
New L:array[1:n/2] = MS(A[n/2+I..n]);
Return(Merge(U,L));
\}
Merge(U,L: array[I..n]) \{

New C: array[1..2n];
a=l; b=l;
For $\mathrm{i}=\mathrm{I}$ to 2 n
$\mathrm{C}[\mathrm{i}]=$ "smaller of $\mathrm{U}[\mathrm{a}], \mathrm{L}[\mathrm{b}]$ and correspondingly $\mathrm{a}++$ or $\mathrm{b}++$ ";
Return C;
\}

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.
$T(n)=2 T(n / 2)+c n, n \geq 2$
$T(I)=0$
Solution: $O(n \log n)$
(details later)

$\mathrm{O}(\mathrm{n})$
work
per level

Why Balanced Subdivision?

Alternative "divide \& conquer" algorithm:
Sort n-I
Sort last I
Merge them
$T(n)=T(n-I)+T(I)+3 n$ for $n \geq 2$
$T(I)=0$
Solution: $3 n+3(n-1)+3(n-2) \ldots=\Theta\left(n^{2}\right)$

Another D\&C Approach

Suppose we've already invented DumbSort, taking time n^{2}
Try Just One Level of divide \& conquer:
DumbSort(first n/2 elements)
DumbSort(last $\mathrm{n} / 2$ elements)
Merge results
Time: $2(n / 2)^{2}+n=n^{2} / 2+n \ll n^{2}$
D\&C in a nutshell
Almost twice as fast!

Another D\&C Approach, cont.

Moral I: "two halves are better than a whole"
Two problems of half size are better than one full-size problem, even given the $O(n)$ overhead of recombining, since the base algorithm has super-linear complexity.

Moral 2: "If a little's good, then more's better" two levels of D\&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").

Another D\&C Approach, cont.

Moral 3: unbalanced division less good:
$(.1 \mathrm{n})^{2}+(.9 \mathrm{n})^{2}+\mathrm{n}=.82 \mathrm{n}^{2}+\mathrm{n}$
The 18% savings compounds significantly if you carry recursion to more levels, actually giving O (nlogn), but with a bigger constant. So worth doing if you can't get 50-50 split, but balanced is better if you can.
This is intuitively why Quicksort with random splitter is good badly unbalanced splits are rare, and not instantly fatal.
$(\mathrm{I})^{2}+(\mathrm{n}-\mathrm{I})^{2}+\mathrm{n}=\mathrm{n}^{2}-2 \mathrm{n}+2+\mathrm{n}$
Little improvement here.

5.4 Closest Pair of Points

Closest pair of points: 1 Dimensional Version

Given n points on the real line, find the closest pair

Closest pair is adjacent in ordered list

Time O(n $\log \mathrm{n})$ to sort, if needed

Plus $\mathrm{O}(\mathrm{n})$ to scan adjacent pairs

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.
fast closest pair inspired fast algorithms for these problems
Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.

1-D version. $O(n \log n$) easy if points are on a line.

Assumption. No two points have same \times coordinate .
to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants. Obstacle. Impossible to ensure $\mathrm{n} / 4$ points in each piece.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. - sems like $\theta\left(n^{2}\right)$
- Return best of 3 solutions.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 8 positions in sorted list!

Closest Pair of Points

Def. Let s_{i} be the point in the 2δ-strip, with the $i^{\text {th }}$ smallest y-coordinate.

Claim. If $|i-j|>8$, then the distance between s_{i} and s_{j} is $>\delta$.
Pf.

- No two points lie in same $\frac{1}{2} \delta-b y-\frac{1}{2} \delta$ box.
- only 8 boxes

Closest Pair Algorithm

```
Closest-Pair(p
    if(n <= ??) return ??
    Compute separation line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta=min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L
    Sort remaining points p[1]...p[m] by y-coordinate.
    for i = 1..m
        k = 1
        while i+k <= m && p[i+k].y< p[i].y + \delta
            \delta = min(\delta, distance between p[i] and p[i+k]);
            k++;
    return \delta.
}
```


Going From Code to Recurrence

Carefully define what you're counting, and write it down!
"Let $\mathrm{C}(\mathrm{n})$ be the number of comparisons between sort keys used by MergeSort when sorting a list of length $n \geq I$ "
In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.
Write Recurrence(s)

Merge Sort

Base Case

$\operatorname{MS}(\mathrm{A}: \operatorname{array}[\mathrm{A} . \mathrm{n}])$ returns array[$[1 . \mathrm{n}]$ \{ If($\mathrm{n}=\mathrm{I}$) return $\mathrm{A}[\mathrm{I}]$;
New L:array[1:n/2] =MS(A[1.m/2]);
New R:array[I:n/2] = $\operatorname{MS}(A[n / 2+1 . . n])$;
Return(Merge(L,R));
\}
Merge(A,B: array[I..n]) \{
New C: array[1..2n];
a=l; b=l;
For $\mathrm{i}=\mathrm{I}$ to nn !
Recursive calls
$\mathrm{C}[\mathrm{i}]=$ smaller of $\Rightarrow[\mathrm{a}], \mathrm{B}[\mathrm{b}]$ and $\mathrm{a}++$ or $\mathrm{b}++$ ";
Return C;
$\}$

The Recurrence

$C(n)= \begin{cases}0 & \text { if } n=1 \\ 2 C(n / 2)+(n-1) & \text { if } n>1\end{cases}$

Total time: proportional to C(n)
(loops, copying data, parameter passing, etc.)

Going From Code to Recurrence

Carefully define what you're counting, and write it down!
"Let $\mathrm{D}(\mathrm{n})$ be the number of pairwise distance comparisons in the Closest-Pair Algorithm when run on $\mathrm{n} \geq \mathrm{I}$ points"
In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted. Write Recurrence(s)

Closest Pair of Points: Analysis

Running time.

$$
D(n) \leq\left\{\begin{array}{cl}
0 & n=1 \\
2 D(n / 2)+7 n & n>1
\end{array}\right\} \Rightarrow D(n)=O(n \log n)
$$

BUT - that's only the number of distance calculations

What if we counted comparisons?

Closest Pair of Points: Analysis

Running time.

$$
C(n) \leq\left\{\begin{array}{cl}
0 & n=1 \\
2 C(n / 2)+O(n \log n) & n>1
\end{array}\right\} \Rightarrow C(n)=O\left(n \log ^{2} n\right)
$$

Q. Can we achieve $O(n \log n)$?
A. Yes. Don't sort points from scratch each time.

- Sort by x at top level only.
- Each recursive call returns δ and list of all points sorted by y
- Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute $a+b$.

- $O(n)$ bit operations.

Multiply. Given two n-digit integers a and b, compute $a \times b$.

- The "grade school" method: $\Theta\left(n^{2}\right)$ bit operations.

Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:

- Multiply four $\frac{1}{2} n$-digit integers.
- Add two $\frac{1}{2} n$-digit integers, and shift to obtain result.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right) \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

1	1	0	1	0	1	0	1	y_{1}
y_{0}								
$*$	1	1	1	1	1	0	1	x_{1}
x_{0}								

| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| $x_{0} \cdot y_{1}$ |
| :--- |
| 0 |

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{2}\right)
$$

[^0]Key trick: 2 multiplies for the price of 1:

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} y_{1}+x^{\prime}\right) \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

Well, ok, 4 for 3 is more accurate...

$$
\begin{array}{ll}
\alpha & =x_{1}+x_{0} \\
\beta & =y_{1}+y_{0} \\
\alpha \beta & =\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right) \\
& =x_{1} y_{1}+\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
\left(x_{1} y_{0}+x_{0} y_{1}\right) & =\alpha \beta-x_{1} y_{1}-x_{0} y_{0}
\end{array}
$$

Karatsuba Multiplication

To multiply two n-digit integers:

- Add two $\frac{1}{2} n$ digit integers.
- Multiply three $\frac{1}{2} n$-digit integers.
- Add, subtract, and shift $\frac{1}{2} n$-digit integers to obtain result.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-x_{1} y_{1}-x_{0} y_{0}\right)+x_{0} y_{0} \\
& \text { A } \quad \text { B } \quad \text { C }
\end{aligned}
$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O\left(n^{1.585}\right)$ bit operations.

$$
\begin{aligned}
& \mathrm{T}(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {recurive calls }}+\underbrace{\Theta(n)}_{\text {add, subtract, shift }} \\
& \text { Sloppy version: } T(n) \leq 3 T(n / 2)+O(n) \\
& \Rightarrow \mathrm{T}(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)
\end{aligned}
$$

Multiplication - The Bottom Line

Naïve:
$\Theta\left(n^{2}\right)$
Karatsuba: $\quad \Theta\left(n^{1.59 \ldots}\right)$
Amusing exercise: generalize Karatsuba to do 5 size $\mathrm{n} /$
3 subproblems $=>\Theta\left(n^{1.46 \ldots}\right)$
Best known: $\Theta(n \log n \log \log n)$
"Fast Fourier Transform"
but mostly unused in practice (unless you need really big numbers - a billion digits of π, say)
High precision arithmetic IS important for crypto

Recurrences

Where they come from, how to find them (above)

Next: how to solve them

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.
$T(n)=2 T(n / 2)+c n, n \geq 2$
$T(I)=0$
Solution: $\Theta(n \log n)$
(details later)
now

$\mathrm{O}(\mathrm{n})$
work
per level

Solve: $T(I)=c$ $T(n)=2 T(n / 2)+c n$

reve Num Size Work

0	$1=2^{0}$	n	cn
I	$2=2^{1}$	$\mathrm{n} / 2$	$2 \mathrm{cn} / 2$
2	$4=2^{2}$	$\mathrm{n} / 4$	$4 \mathrm{cn} / 4$
\ldots	\ldots	\ldots	\ldots
i	2^{i}	$n / 2^{i}$	$2^{i} \mathrm{c} n / 2^{i}$
\ldots	\ldots	\ldots	\ldots
$k-I$	2^{k-1}	$\mathrm{n} / 2^{k-1}$	$2^{k-1} \mathrm{cn} / 2^{k-1}$
k	2^{k}	$n / 2^{k}=1$	$2^{k} T(1)$

Total Work: c $\mathrm{n} \log _{2} \mathrm{n}$ (add last col)

Solve: $T(I)=c$ $T(n)=4 T(n / 2)+c n$

Total Work: $\mathrm{T}(\mathrm{n})=\sum_{i=0}^{k} 4^{i} c n / 2^{i}=O\left(n^{2}\right)$

Solve: $T(I)=c$

$$
T(n)=3 T(n / 2)+c n
$$

Level Num

0	$1=3^{0}$	n	cn
I	$3=3^{1}$	$\mathrm{n} / 2$	$3 \mathrm{cn} / 2$
2	$9=3^{2}$	$\mathrm{n} / 4$	$9 \mathrm{cn} / 4$
\ldots	\ldots	\ldots	\ldots
i	3^{i}	$\mathrm{n} / 2^{\mathrm{i}}$	$3^{\mathrm{i}} \mathrm{c} \mathrm{n} / 2^{\mathrm{i}}$
\ldots	\ldots	\ldots	\ldots
$\mathrm{k}-\mathrm{I}$	$3^{\mathrm{k}-1}$	$\mathrm{n} / 2^{\mathrm{k}-1}$	$3^{\mathrm{k}-1} \mathrm{c} \mathrm{n} / 2^{\mathrm{k}-1}$

$n=2^{k} ; k=\log _{2} n \quad k \quad 3^{k} \quad n / 2^{k}=1 \quad 3^{k} T(1)$
Total Work: $\mathrm{T}(\mathrm{n})=\sum_{i=0}^{k} 3^{i} \mathrm{cn} / 2^{i}$

Solve: $T(I)=c$

 $\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}$ (cont.)$$
\begin{aligned}
T(n) & =\sum_{i=0}^{k} 3^{i} c n / 2^{i} \\
& =c n \sum_{i=0}^{k} 3^{i} / 2^{i} \\
& =c n \sum_{i=0}^{k}\left(\frac{3}{2}\right)^{i} \\
& =c n \frac{\left(\frac{3}{2}\right)^{k+1}-1}{\left(\frac{3}{2}\right)-1}
\end{aligned}
$$

$$
\begin{gathered}
\sum_{i=0}^{k} x^{i}= \\
\frac{x^{k+1}-1}{x-1} \\
(x \neq 1)
\end{gathered}
$$

Solve: $T(I)=c$

$$
T(n)=3 T(n / 2)+c n \quad \text { (cont.) }
$$

$$
\begin{aligned}
& =2 \operatorname{cn}\left(\left(\frac{3}{2}\right)^{k+1}-1\right) \\
& <2 \operatorname{cn}\left(\frac{3}{2}\right)^{k+1}
\end{aligned}
$$

$$
=3 \operatorname{cn}\left(\frac{3}{2}\right)^{k}
$$

$$
=3 c n \frac{3^{k}}{2^{k}}
$$

Solve: $T(I)=c$ $\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}$ (cont.)

$$
=3 c n \frac{3^{\log _{2} n}}{2^{\log _{2} n}}
$$

$$
=3 c n \frac{3^{\log _{2} n}}{}
$$

$$
n
$$

$$
=3 c 3^{\log _{2} n}
$$

$$
=3 c\left(n^{\log _{2} 3}\right)
$$

$$
=O\left(n^{1.59 \cdots}\right)
$$

$$
\begin{aligned}
& a^{\log _{b} n} \\
& =\left(b^{\log _{b} a}\right)^{\log _{b} n} \\
& =\left(b^{\log _{b} n}\right)^{\log _{b} a} \\
& =n^{\log _{b} a}
\end{aligned}
$$

Divide and Conquer Master Recurrence

If $T(n)=a T(n / b)+c n^{k}$ for $n>b$ then

$$
\text { if } a>b^{k} \text { then } T(n) \text { is } \Theta\left(n^{\log _{b} a}\right)
$$

if $\mathrm{a}<\mathrm{b}^{\mathrm{k}}$ then $\mathrm{T}(\mathrm{n})$ is $\Theta\left(\mathrm{n}^{\mathrm{k}}\right)$
if $a=b^{k}$ then $T(n)$ is $\Theta\left(n^{k} \log n\right)$

True even if it is $\lceil\mathrm{n} / \mathrm{b}\rceil$ instead of n / b.

D \& C Summary

Idea:
"Two halves are better than a whole"
if the base algorithm has super-linear complexity.
"If a little's good, then more's better"
repeat above, recursively
Analysis: recursion tree or Master Recurrence Applications: Many.

Binary Search, Merge Sort, (Quicksort), Closest points, Integer multiply,...

[^0]: assumes n is a power of 2

