CSE 417: Algorithms and Computational Complexity

Winter 2009 Larry Ruzzo

Divide and Conquer Algorithms

HW4 – Empirical Run Times

Plot Time vs n

Fit curve to it (e.g., with Excel)

Note: Higher degree

polynomials fit better...

Plotting Time/(growth rate) vs n may be more sensitive – should be flat, but small n may be unrepresentative of asymptotics

2

The Divide and Conquer Paradigm

Outline:

General Idea

Review of Merge Sort

Why does it work?

Importance of balance

Importance of super-linear growth

Some interesting applications

Closest points

Integer Multiplication

Finding & Solving Recurrences

Algorithm Design Techniques

Divide & Conquer

Reduce problem to one or more sub-problems of the same type

Typically, each sub-problem is at most a constant fraction of the size of the original problem

e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

3

Merge Sort

```
MS(A: array[1..n]) returns array[1..n] {
    If(n=1) return A[1];
    New U:array[1:n/2] = MS(A[1..n/2]);
    New L:array[1:n/2] = MS(A[n/2+1..n]);
    Return(Merge(U,L));
    }

Merge(U,L: array[1..n]) {
    New C: array[1..2n];
    a=1; b=1;
    For i = 1 to 2n
        C[i] = "smaller of U[a], L[b] and correspondingly a++ or b++";
    Return C;
    }
```

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

$$T(n) = 2T(n/2)+cn, n \ge 2$$

 $T(1) = 0$
Solution: O(n log n)
(details later)

Why Balanced Subdivision?

Alternative "divide & conquer" algorithm:

Sort n-I

Sort last I

Merge them

$$T(n) = T(n-1)+T(1)+3n$$
 for $n \ge 2$
 $T(1) = 0$
Solution: $3n + 3(n-1) + 3(n-2) \dots = \Theta(n^2)$

Another D&C Approach

Suppose we've already invented DumbSort, taking time n²

Try Just One Level of divide & conquer:

DumbSort(first n/2 elements)

DumbSort(last n/2 elements)

Merge results

Time: $2 (n/2)^2 + n = n^2/2 + n << n^2$

Almost twice as fast!

D&C in a nutshell

Another D&C Approach, cont.

Moral I: "two halves are better than a whole"

Two problems of half size are better than one full-size problem, even given the O(n) overhead of recombining, since the base algorithm has super-linear complexity.

Moral 2: "If a little's good, then more's better"

two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").

9

5.4 Closest Pair of Points

Another D&C Approach, cont.

Moral 3: unbalanced division less good:

$$(.1n)^2 + (.9n)^2 + n = .82n^2 + n$$

The 18% savings compounds significantly if you carry recursion to more levels, actually giving O(nlogn), but with a bigger constant. So worth doing if you can't get 50-50 split, but balanced is better if you can.

This is intuitively why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.

$$(1)^2 + (n-1)^2 + n = n^2 - 2n + 2 + n$$

Little improvement here.

10

Closest pair of points: 1 Dimensional Version

Given n points on the real line, find the closest pair

Closest pair is adjacent in ordered list

Time O(n log n) to sort, if needed

Plus O(n) to scan adjacent pairs

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

 $\ensuremath{\uparrow}$ fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

13

15

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

14

Closest Pair of Points

Algorithm.

• Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.

1/

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\Theta(n^2)$

Closest Pair of Points

Return best of 3 solutions.

Algorithm.

18

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $\langle \delta$.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $\langle \delta$.

 \blacksquare Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $\langle \delta \rangle$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $\langle \delta \rangle$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.
- Only check distances of those within 8 positions in sorted list!

Closest Pair of Points

Def. Let s_i be the point in the 2δ -strip, with the ith smallest y-coordinate.

Claim. If |i - j| > 8, then the distance between s_i and s_i is > δ . Pf.

- No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
- only 8 boxes

Closest Pair Algorithm

```
Closest-Pair(p<sub>1</sub>, ..., p<sub>n</sub>) {
   if(n <= ??) return ??
   Compute separation line L such that half the points
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
   Sort remaining points p[1]...p[m] by y-coordinate.
   for i = 1..m
       k = 1
       while i+k \le m \&\& p[i+k].y \le p[i].y + \delta
         \delta = \min(\delta, \text{ distance between p[i] and p[i+k])};
         k++;
   return δ.
```

Going From Code to Recurrence

Carefully define what you're counting, and write it down!

"Let C(n) be the number of comparisons between sort keys used by MergeSort when sorting a list of length $n \ge 1$ "

In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

Write Recurrence(s)

25

Merge Sort **Base Case** MS(A: array ...n]) returns array [1...n] { If(n=I) return A[I]; Recursive New L:array[I:n/2] = MS(A[I..n/2]); calls New R:array[1:n/2] = MS(A[n/2+1..n]); Return(Merge(L,R)); Merge(A,B: array[1..n]) { Recursive New C: array[1..2n]; case a=1; b=1;**Operations** For i = 1 to 2nC[i] ='smaller of A[a], B[b] and a++ or b++"; being Return C:

The Recurrence

 $C(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2C(n/2) + (n-1) & \text{if } n > 1 \end{cases}$ Recursive calls

One compare per element added to merged list, except

Total time: proportional to C(n)

(loops, copying data, parameter passing, etc.)

Going From Code to Recurrence

Carefully define what you're counting, and write it down!

"Let D(n) be the number of pairwise distance comparisons in the Closest-Pair Algorithm when run on $n \ge 1$ points"

In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

Write Recurrence(s)

27

```
Closest Pair Algorithm
                                                                 Basic operations:
 Base Case
                                                                  distance calcs
Closest Fair (p1, ..., Pn) {
                                          Recursive calls (2)
   if(n <= 1) return ∞
                                                                            0
   Compute separation line L such that half the points
   are on one side and half on the other side.
   \delta_1 = \text{Closest Pair (left half)}
                                                                            2D(n / 2)
       = Closest-rair(right half)
   \delta = \min(\hat{\mathbf{o}}_1, \hat{\mathbf{s}}_2)
   Delete all points further than \delta from separation line L
                                                Basic operations at
   Sort remaining points p[1]...p[m]
                                                this recursive level
   for i = 1..m
       k = 1
       while i+k \le m \in p[i+k].y \le p[i].y + \delta
                                                                            O(n)
         \delta = \min(\delta \text{ distance between p[i] and p[i+k])};
         k++;
    return δ.
```

Closest Pair of Points: Analysis

Running time.

$$D(n) \leq \begin{cases} 0 & n=1 \\ 2D\left(n/2\right) + 7n & n>1 \end{cases} \Rightarrow D(n) = O(n \log n)$$

BUT - that's only the number of distance calculations

What if we counted comparisons?

30

Closest Pair Algorithm Basic operations: Base Case comparisons Closest Fair (p1, ..., Pn) { Recursive calls (2) if(n <= 1) return ∞ 0 Compute separation line L such that half the points O(n log n) are on one side and half on the other side. $\delta_1 = \text{Closest Pair(left half)}$ 2C(n / 2) δ_2 = Closest-rair(right half) $\delta = \min(\hat{\mathbf{o}}_1, \hat{\mathbf{s}}_2)$ 1 Delete all points further than δ from separation line I O(n) Basic operations at Sort remaining points p[1]...p[m] O(n log n) this recursive level for i = 1..mk = 1while $i+k \le m \hat{a}\hat{a} p[i+k].y \le p[i].y + \delta$ O(n) $\delta = \min(\delta)$ distance between p[i] and p[i+k]); k++; return δ.

Closest Pair of Points: Analysis

Running time.

29

31

$$C(n) \leq \begin{cases} 0 & n=1 \\ 2C\left(n/2\right) + O(n\log n) & n>1 \end{cases} \Rightarrow C(n) = O(n\log^2 n)$$

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points from scratch each time.

- Sort by x at top level only.
- Each recursive call returns δ and list of all points sorted by y
- Sort by merging two pre-sorted lists.

$$T(n) \le 2T(n/2) + O(n) \implies T(n) = O(n \log n)$$

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.

O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a \times b.

■ The "grade school" method: $\Theta(n^2)$ bit operations.

Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:

- Multiply four ½n-digit integers.
- Add two $\frac{1}{2}$ n-digit integers, and shift to obtain result.

35

Key trick: 2 multiplies for the price of 1:

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = \left(2^{n/2} \cdot x_1 + x_0\right) \left(2^{n/2} \cdot y_1 + y_0\right)$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot \left((x_1 y_0 + x_0 y_1)\right) + x_0 y_0$$

$$\alpha = x_1 + x_0$$

$$\beta = y_1 + y_0$$

$$\alpha\beta = (x_1 + x_0) \left(y_1 + y_0\right)$$

$$= x_1 y_1 + \left(x_1 y_0 + x_0 y_1\right) + x_0 y_0$$

$$= (x_1 y_0 + x_0 y_1) = \alpha\beta - x_1 y_1 - x_0 y_0$$

Karatsuba Multiplication

To multiply two n-digit integers:

- Add two ½n digit integers.
- Multiply three ½n-digit integers.
- Add, subtract, and shift $\frac{1}{2}$ n-digit integers to obtain result.

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0$$

$$A \qquad B \qquad A \qquad C \qquad C$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O(n^{1.585})$ bit operations.

$$T(n) \leq \underbrace{T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + T(1 + \lceil n/2 \rceil)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, subtract, shift}}$$

$$Sloppy \ version: \ T(n) \leq 3T(n/2) + O(n)$$

$$\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})$$

37

39

Multiplication – The Bottom Line

Naïve: $\Theta(n^2)$ Karatsuba: $\Theta(n^{1.59...})$

Amusing exercise: generalize Karatsuba to do 5 size n/3 subproblems => $\Theta(n^{1.46...})$

Best known: $\Theta(n \log n \log \log n)$

"Fast Fourier Transform"

but mostly unused in practice (unless you need really big numbers - a billion digits of π , say)

High precision arithmetic IS important for crypto

38

Recurrences

Where they come from, how to find them (above)

Next: how to solve them

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

$$T(n) = 2T(n/2)+cn, n \ge 2$$

 $T(1) = 0$
Solution: $\Theta(n \log n)$
(details later)

Solve:
$$T(1) = c$$

 $T(n) = 2 T(n/2) + cn$

Level	Num	Size	Work
0	$1 = 2^0$	n	cn
I	$2 = 2^{1}$	n/2	2cn/2
2	$4 = 2^2$	n/4	4cn/4
	•••	•••	•••
i	2 ⁱ	n/2i	2 ⁱ c n/2 ⁱ
	•••	•••	•••
k-I	2 ^{k-1}	n/2 ^{k-1}	2^{k-1} c $n/2^{k-1}$
k	2 ^k	$n/2^k = 1$	2 ^k T(1)
k-I	2 ^{k-1}	n/2 ^{k-1}	2 ^{k-1} c n/2 ^{k-1}

 $n = 2^k$; $k = log_2 n$

Total Work: c n log₂n (add last col) -

Solve: T(I) = cT(n) = 4 T(n/2) + cn

Level	Num	Size	Work
0	$1 = 4^0$	n	cn
1	$4 = 4^{1}$	n/2	4cn/2
2	$16 = 4^2$	n/4	16cn/4
	•••		
i	4 ⁱ	n/2i	4 ⁱ c n/2 ⁱ
	•••	•••	
k-I	4 ^{k-1}	n/2 ^{k-1}	4^{k-1} c $n/2^{k-1}$
k	4 ^k	$n/2^k = 1$	4 ^k T(1)
			<u> </u>

 $n = 2^k ; k = log_2 n$

Total Work: $T(n) = \sum_{i=0}^{k} 4^{i} cn/2^{i} = O(n^{2})$

Solve: T(1) = cT(n) = 3 T(n/2) + cn

 $n = 2^k$; $k = \log_2 n$

Level	Num	Size	Work
0	$1 = 3^{0}$	n	cn
I	$3 = 3^1$	n/2	3cn/2
2	$9 = 3^2$	n/4	9cn/4
	•••	•••	•••
i	3 ⁱ	n/2i	3 ⁱ c n/2 ⁱ
	•••	•••	•••
k-I	3 ^{k-1}	n/2 ^{k-1}	3^{k-1} c $n/2^{k-1}$
k	3^k	$n/2^k = 1$	3 ^k T(1)

Total Work: $T(n) = \sum_{i=0}^{k} 3^i cn / 2^i$

Solve: T(1) = cT(n) = 3 T(n/2) + cn (cont.)

$$T(n) = \sum_{i=0}^{k} 3^{i} cn / 2^{i}$$

$$= cn \sum_{i=0}^{k} 3^{i} / 2^{i}$$

$$= cn \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$

$$= cn \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{\left(\frac{3}{2}\right) - 1}$$

$$\sum_{i=0}^{k} x^{i} = \frac{x^{k+1} - 1}{x - 1}$$

$$(x \neq 1)$$

Solve: T(I) = c
T(n) = 3 T(n/2) + cn

$$= 2cn\left(\left(\frac{3}{2}\right)^{k+1} - 1\right)$$

$$< 2cn\left(\frac{3}{2}\right)^{k+1}$$

$$= 3cn\left(\frac{3}{2}\right)^{k}$$

$$= 3cn\frac{3^{k}}{2^{k}}$$

45

47

$$= 3cn \frac{3^{\log_2 n}}{2^{\log_2 n}}$$

$$= 3cn \frac{3^{\log_2 n}}{n}$$

$$= 3c 3^{\log_2 n}$$

$$= 3c(n^{\log_2 3})$$

$$= O(n^{1.59...})$$

$$= 3cn \frac{3^{\log_2 n}}{n}$$

$$= (b^{\log_b a})^{\log_b n}$$

$$= (b^{\log_b n})^{\log_b a}$$

$$= n^{\log_b a}$$

Solve: T(I) = c

Divide and Conquer Master Recurrence

If $T(n) = aT(n/b)+cn^k$ for n > b then

if $a > b^k$ then T(n) is $\Theta(n^{\log_b a})$ [many subproblems => leaves dominate]

if $a < b^k$ then T(n) is $\Theta(n^k)$ [few subproblems => top level dominates]

if $a = b^k$ then T(n) is $\Theta(n^k \log n)$ [balanced => all log n levels contribute]

True even if it is $\lceil n/b \rceil$ instead of n/b.

D & C Summary

T(n) = 3 T(n/2) + cn (cont.)

Idea:

"Two halves are better than a whole" if the base algorithm has super-linear complexity.

"If a little's good, then more's better" repeat above, recursively

Analysis: recursion tree or Master Recurrence Applications: Many.

Binary Search, Merge Sort, (Quicksort), Closest points, Integer multiply,...