CSE 4I7: Algorithms and Computational Complexity

Winter 2009
Larry Ruzzo
Divide and Conquer Algorithms

The Divide and Conquer Paradigm

Outline:
General Idea
Review of Merge Sort
Why does it work?
Importance of balance
Importance of super-linear growth
Some interesting applications
Closest points
Integer Multiplication
Finding \& Solving Recurrences

HW4 - Empirical Run Times

Plot Time vs n
Fit curve to it (e.g., with Excel)
Note: Higher degree polynomials fit better...

Plotting Time/(growth rate) vs n may be more sensitive should be flat, but small n may be unrepresentative of asymptotics

2

Algorithm Design Techniques

Divide \& Conquer

Reduce problem to one or more sub-problems of the same type
Typically, each sub-problem is at most a constant fraction of the size of the original problem
e.g. Mergesort, Binary Search, Strassen's Algorithm,

Quicksort (kind of)

Merge Sort

MS(A: array[I..n]) returns array[I..n] \{ If $(\mathrm{n}=\mathrm{I})$ return $\mathrm{A}[\mathrm{I}]$;
New U:array[I:n/2] = MS(A[I..n/2]);
New L:array[I:n/2] = MS(A[n/2+1..n]);
Return(Merge(U,L));
\}

Merge(U,L: array[I..n]) \{
New C: array[1..2n];
a=l; b=I;
For $i=I$ to $2 n$
$\mathrm{C}[\mathrm{i}]=$ "smaller of $\mathrm{U}[\mathrm{a}], \mathrm{L}[\mathrm{b}]$ and correspondingly $\mathrm{a}++$ or $\mathrm{b}++$ ";
Return C;
\}

Why Balanced Subdivision?

Alternative "divide \& conquer" algorithm:
Sort n-I
Sort last I
Merge them
$T(n)=T(n-I)+T(I)+3 n$ for $n \geq 2$
$T(I)=0$
Solution: $3 n+3(n-1)+3(n-2) \ldots=\Theta\left(n^{2}\right)$

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.
$T(n)=2 T(n / 2)+c n, n \geq 2$
$T(I)=0$
Solution: $O(n \log n)$ (details later)

Another D\&C Approach

Suppose we've already invented DumbSort, taking time n^{2}
Try Just One Level of divide \& conquer:
DumbSort(first $n / 2$ elements)
DumbSort(last $n / 2$ elements)
Merge results
Time: $2(\mathrm{n} / 2)^{2}+\mathrm{n}=\mathrm{n}^{2} / 2+\mathrm{n} \ll \mathrm{n}^{2}$
Almost twice as fast!

Another D\&C Approach, cont.

Moral I: "two halves are better than a whole"
Two problems of half size are better than one full-size problem, even given the $O(n)$ overhead of recombining, since the base algorithm has super-linear complexity.

Moral 2: "If a little's good, then more's better" two levels of D\&C would be almost 4 times faster, 3 levels almost 8 , etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").

Another D\&C Approach, cont.

Moral 3: unbalanced division less good:

$(.1 n)^{2}+(.9 n)^{2}+n=.82 n^{2}+n$
The 18% savings compounds significantly if you carry recursion to more levels, actually giving $\mathrm{O}(\mathrm{nlogn})$, but with a bigger constant. So worth doing if you can't get $50-50$ split, but balanced is better if you can.
This is intuitively why Quicksort with random splitter is good badly unbalanced splits are rare, and not instantly fatal.
$(I)^{2}+(n-I)^{2}+n=n^{2}-2 n+2+n$
Little improvement here.

Closest pair of points: 1 Dimensional Version

Given n points on the real line, find the closest pair

Closest pair is adjacent in ordered list

Time $O(n \log n)$ to sort, if needed

Plus $\mathrm{O}(\mathrm{n})$ to scan adjacent pairs

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.
${ }^{1}$ fast closest pair inspired fast algorithms for these problems
Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.
1-D version. $O(n \log n)$ easy if points are on a line.
Assumption. No two points have same \times coordinate.

```
to make presentation cleaner
```


Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n / 4$ points in each piece.

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\theta\left(n^{2}\right)$
- Return best of 3 solutions.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

Closest Pair of Points

Def. Let s_{i} be the point in the 2δ-strip, with the $\mathrm{i}^{\text {th }}$ smallest y -coordinate.

Claim. If $|i-j|>8$, then the distance between s_{i} and s_{j} is $>\delta$.
Pf.

- No two points lie in same $\frac{1}{2} \delta$-by- $\frac{1}{2} \delta$ box.
- only 8 boxes

δ

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 8 positions in sorted list!

Closest Pair Algorithm

Closest-Pair $\left(p_{1}, \ldots, p_{n}\right)$ \{
if(n <= ??) return ??
Compute separation line L such that half the points are on one side and half on the other side.
$\delta_{1}=$ Closest-Pair(left half)
$\delta_{2}=$ Closest-Pair(right half)
$\delta=\min \left(\delta_{1}, \delta_{2}\right)$
Delete all points further than δ from separation line L
Sort remaining points $p[1] \ldots \mathrm{p}[\mathrm{m}]$ by y -coordinate.
for $\mathrm{i}=1$..m
k = 1
while $i+k<=m \& \& p[i+k] \cdot y<p[i] \cdot y+\delta$
$\delta=\min (\delta$, distance between $p[i]$ and $p[i+k])$;
k++;
return δ

Closest Pair of Points

Going From Code to Recurrence

Carefully define what you're counting, and write it down!
"Let $\mathrm{C}(\mathrm{n})$ be the number of comparisons between sort keys used by MergeSort when sorting a list of length $n \geq$ I"
In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.
Write Recurrence(s)

Going From Code to Recurrence

Carefully define what you're counting, and write it down!
"Let $D(n)$ be the number of pairwise distance comparisons
in the Closest-Pair Algorithm when run on $\mathrm{n} \geq \mathrm{I}$ points"
In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted. Write Recurrence(s)

Total time: proportional to C(n)
(loops, copying data, parameter passing, etc.)

$$
C(n)= \begin{cases}0 & \text { if } n=1 \\
2 C(n / 2)+(n-1) & \text { if } n>1 \\
\text { Recursive calls } & \begin{array}{l}
\text { One compare per } \\
\text { element added to } \\
\text { merged list, except } \\
\text { the last. }
\end{array}\end{cases}
$$

The Recurrence

Running time.

$$
D(n) \leq\left\{\begin{array}{cc}
0 & n=1 \\
2 D(n / 2)+7 n & n>1
\end{array}\right\} \Rightarrow D(n)=O(n \log n)
$$

BUT - that's only the number of distance calculations
What if we counted comparisons?

Closest Pair of Points: Analysis

Running time.

$$
C(n) \leq\left\{\begin{array}{cl}
0 & n=1 \\
2 C(n / 2)+O(n \log n) & n>1
\end{array}\right\} \Rightarrow C(n)=O\left(n \log ^{2} n\right)
$$

Q. Can we achieve $O(n \log n)$?
A. Yes. Don't sort points from scratch each time.

- Sort by x at top level only.
- Each recursive call returns δ and list of all points sorted by y
- Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

5.5 Integer Multiplication

Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:

- Multiply four $\frac{1}{2} n$-digit integers.
- Add two $\frac{1}{2} n$-digit integers, and shift to obtain result.
$x=2^{n / 2} \cdot x_{1}+x_{0}$
$y=2^{n / 2} \cdot y_{1}+y_{0}$
$x y=\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right)$
$=2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}$
10101001
00100011
$\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{2}\right)$
\dagger
assumes n is a power of 2

Add. Given two n-digit integers a and b, compute $a+b$. - $O(n)$ bit operations.

Multiply. Given two n-digit integers a and b, compute $a \times b$

- The "grade school" method: $\Theta\left(n^{2}\right)$ bit operations.

Key trick: 2 multiplies for the price of 1:

Karatsuba Multiplication

To multiply two n-digit integers:

- Add two $\frac{1}{2} n$ digit integers.
- Multiply three $\frac{1}{2} n$-digit integers.
- Add, subtract, and shift $\frac{1}{2} n$-digit integers to obtain result.

```
x=2 2n/2}\cdot\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{
    = 2 2
xy = 2 2}\cdot\mp@subsup{2}{1}{}\mp@subsup{y}{1}{}+\mp@subsup{2}{}{n/2}\cdot(\mp@subsup{x}{1}{}\mp@subsup{y}{0}{}+\mp@subsup{x}{0}{}\mp@subsup{y}{1}{})+\mp@subsup{x}{0}{}\mp@subsup{y}{0}{
```


Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O\left(n^{1.585}\right)$ bit operations.


```
Sloppy version:T(n)\leq3T(n/2)+O(n)
=>T(n)=O(n}\mp@subsup{n}{}{\mp@subsup{\operatorname{log}}{2}{}3})=O(\mp@subsup{n}{}{1.585}
```


Recurrences

Where they come from, how to find them (above)

Next: how to solve them

Multiplication - The Bottom Line

Naïve:
$\Theta\left(n^{2}\right)$
Karatsuba: $\quad \Theta\left(n^{1.59 \ldots}\right)$
Amusing exercise: generalize Karatsuba to do 5 size $\mathrm{n} /$ 3 subproblems $=>\Theta\left(n^{1.46 \ldots}\right)$
Best known: $\Theta(n \log n \log \log n)$
"Fast Fourier Transform"
but mostly unused in practice (unless you need really big numbers - a billion digits of π, say)
High precision arithmetic IS important for crypto

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.
$T(n)=2 T(n / 2)+c n, n \geq 2$
$T(I)=0$
Solution: $\Theta(n \log n)$ (details laty)
now

Solve: $T(I)=c$

$$
T(n)=2 T(n / 2)+c n
$$

0	$1=2^{0}$	n	$\mathrm{cn}^{\text {a }}$
1	$2=2^{1}$	n/2	2cn/2
2	$4=2^{2}$	n/4	$4 \mathrm{cn} / 4$
\ldots	\ldots		
i	${ }^{2}$	n/21	$2^{\prime} \mathrm{c} / 2^{\prime}$
k-1	$2^{k \times 1}$	$\mathrm{n} / 2^{k-1}$	$2^{k \times 1} \mathrm{~cm} / 2^{k}$
k	2^{k}	$\mathrm{n} / 2^{\mathrm{k}}=1$	$2^{k} \mathrm{~T}$ (1)

Total Work: $\mathrm{c} \mathrm{n} \log _{2} \mathrm{n}$ (add last col)
 41

Solve: $T(I)=c$

$$
T(n)=3 T(n / 2)+c n
$$

Total Work: $\mathrm{T}(\mathrm{n})=\sum_{i=0}^{k} 3^{i} \mathrm{cn} / 2^{i}$ \qquad 43

Solve: $T(I)=c$

$$
T(n)=4 T(n / 2)+c n
$$

Level	Num	sire	Work
0	$1=4^{0}$	n	cn
1	$4=41$	n/2	4cm/2
2	$16=4^{2}$	n/4	$16 \mathrm{cr} / 4$
...
i	4	n/2	$4^{1} \mathrm{c}$ n/2
\ldots	$4{ }^{4 k-1}$	$\mathrm{n} / 2^{\mathrm{k}-1}$	${ }^{\text {k/1 }} \mathrm{c} / 2^{k-1}$
k	4^{k}	$n / 2^{K}=1$	$4^{k} \mathrm{~T}(1)$

Total Work: $\mathrm{T}(\mathrm{n})=\sum_{i-0}^{k} 4^{i} c n / 2^{i}=O\left(n^{2}\right)$ \qquad

Solve: $T(I)=c$

$$
T(n)=3 T(n / 2)+c n \quad \text { (cont.) }
$$

$$
\begin{array}{rlr}
T(n) & =\sum_{i=0}^{k} 3^{i} c n / 2^{i} & \\
& =c n \sum_{i=0}^{k} 3^{i} / 2^{i} & \sum_{i=0}^{k} x^{i}= \\
& =c n \sum_{i=0}^{k}\left(\frac{3}{2}\right)^{i} & \frac{x^{k+1}-1}{x-1} \\
& =c n \frac{\left(\frac{3}{2}\right)^{k+1}-1}{\left(\frac{3}{2}\right)-1} & (x \neq 1)
\end{array}
$$

Solve: $T(I)=c$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} \\
= & 2 c n\left(\left(\frac{3}{2}\right)^{k+1}-1\right) \\
& <2 \operatorname{cn}\left(\frac{3}{2}\right)^{k+1} \\
= & 3 \operatorname{cn}\left(\frac{3}{2}\right)^{k} \\
= & 3 \operatorname{cn} \frac{3^{k}}{2^{k}}
\end{aligned}
$$

Divide and Conquer Master Recurrence

If $T(n)=a T(n / b)+n^{k}$ for $n>b$ then

if $a>b^{k}$ then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$	[many subproblems $=>$ leaves dominate]
if $a<b^{k}$ then $T(n)$ is $\Theta\left(n^{k}\right)$	[few subproblems $=>$ top level dominates]
if $a=b^{k}$ then $T(n)$ is $\Theta\left(n^{k} \log n\right)$	[balanced $=>$ all $\log n$ levels contribute]

True even if it is $\lceil n / b\rceil$ instead of n / b.

Solve: $T(I)=c$

$$
\begin{array}{ll}
\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} & \text { (cont.) } \\
=3 c n \frac{3^{\log _{2} n}}{2^{\log _{2} n}} & \\
=3 c n \frac{3^{\log _{2} n}}{n} & a^{\log _{b} n} \\
=3 c 3^{\log _{2} n} & =\left(b^{\log _{b} a}\right)^{\log _{b} n} \\
=3 c\left(n^{\log _{2} 3}\right) & =\left(b^{\log _{b} n}\right)^{\log _{b} a} \\
=O\left(n^{1.59 \ldots}\right) & =n^{\log _{b} a} \\
\hline
\end{array}
$$

D \& C Summary

Idea:

"Two halves are better than a whole" if the base algorithm has super-linear complexity.
"If a little's good, then more's better"
repeat above, recursively
Analysis: recursion tree or Master Recurrence Applications: Many.

Binary Search, Merge Sort, (Quicksort), Closest points, Integer multiply,...

