
1

CSE 417: Algorithms and
Computational Complexity

Winter 2009

Graphs and Graph Algorithms

Larry Ruzzo

Goals

Graphs: defns, examples, utility, terminology

Representation: input, internal

Traversal: Breadth- & Depth-first search

Three Algorithms:

Connected components

Bipartiteness

Topological sort

2

3

Meg Ryan was in 
“French Kiss”  

with Kevin Kline

Meg Ryan was in  
“Sleepless in Seattle” 

with Tom Hanks

Kevin Bacon was in 
“Apollo 13”  

with Tom Hanks

4

Objects & Relationships

The Kevin Bacon Game:

Actors

Two are related if they’ve been in a movie together

Exam Scheduling:

Classes

Two are related if they have students in common

Traveling Salesperson Problem:

Cities

Two are related if can travel directly between them

5

Graphs

An extremely important formalism for
representing (binary) relationships

Objects: “vertices”, aka “nodes”

Relationships between pairs: “edges”, aka
“arcs”

Formally, a graph G = (V, E) is a pair of sets,
V the vertices and E the edges

6

Undirected Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

7

Undirected Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

8

Undirected Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

9

Undirected Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

“self- 
loop”

“multi-

 edge”

10

Undirected Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

“self- 
loop”

“multi-

 edge”

11

Graphs don’t live in Flatland

Geometrical drawing is mentally �
convenient, but mathematically�
irrelevant: 4 drawings, 1 graph.

A

7 4

3
A

7 4

3

A

7 4

3

A

7 4

3

12

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

13

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

14

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

15

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

“self- 
loop”

“multi-

 edge”

16

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

“self- 
loop”

“multi-

 edge”

17

A

7 4

3

Specifying undirected �
graphs as input

What are the vertices?

Explicitly list them: �
{“A”, “7”, “3”, “4”}

What are the edges?

Either, set of edges �
{{A,3}, {7,4}, {4,3}, {4,A}}

Or, (symmetric) adjacency
matrix:

€

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

18

A

7 4

3

Specifying directed �
graphs as input

What are the vertices?

Explicitly list them: �
{“A”, “7”, “3”, “4”}

What are the edges?

Either, set of directed edges:
{(A,4), (4,7), (4,3), (4,A), (A,3)}

Or, (nonsymmetric)
adjacency matrix:

€

A 7 3 4
A 0 0 1 1
7 0 0 0 0
3 0 0 0 0
4 1 1 1 0

19

Let G be an undirected graph with n vertices and m
edges. How are n and m related?

Since

every edge connects two different vertices (no loops),
and no two edges connect the same two vertices (no
multi-edges),

it must be true that:�

 0 ≤ m ≤ n(n-1)/2 = O(n2)

Vertices vs # Edges

20

More Cool Graph Lingo

A graph is called sparse if m << n2, otherwise it is
dense

Boundary is somewhat fuzzy; O(n) edges is certainly
sparse, Ω(n2) edges is dense.

Sparse graphs are common in practice

E.g., all planar graphs are sparse (m ≤ 3n-6, for n ≥ 3)

Q: which is a better run time, O(n+m) or O(n2)?

A: O(n+m) = O(n2), but n+m usually way better!

21

Representing Graph G = (V,E)�

Vertex set V = {v1, …, vn}

Adjacency Matrix A

A[i,j] = 1 iff (vi,vj) ∈ E

Space is n2 bits

Advantages:

O(1) test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs, both in
storage and access

m << n2

€

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

A

7 4 3

internally, indp of input format

22

Representing Graph G=(V,E)�
n vertices, m edges

Adjacency List:

O(n+m) words

Advantages:

Compact for �
sparse graphs

Easily see all edges

Disadvantages

More complex data structure

no O(1) edge test

7

7

v3

v2

v1

vn

2
 6

2
 4

3

5

1

23

Representing Graph G=(V,E)�
n vertices, m edges

Adjacency List:

O(n+m) words

Back- and cross pointers more work to build, but
allow easier traversal and deletion of edges, if
needed, (don’t bother if not)

1

7

v3

v2

v1

v7

2
 6

2
 4

3

5

1

24

Graph Traversal

Learn the basic structure of a graph

“Walk,” via edges, from a fixed starting vertex
s to all vertices reachable from s

Being orderly helps. Two common ways:

Breadth-First Search

Depth-First Search

25

Breadth-First Search

Completely explore the vertices in order of
their distance from s

Naturally implemented using a queue

26

Breadth-First Search

Idea: Explore from s in all possible directions, layer by layer.

BFS algorithm.

L0 = { s }.

L1 = all neighbors of L0.

L2 = all nodes not in L0 or L1, and having an edge to a node in L1.

Li+1 = all nodes not in earlier layers, and having an edge to a node in Li.

Theorem. For each i, Li consists of all nodes at distance �
(i.e., min path length) exactly i from s.

Cor: There is a path from s to t iff t appears in some layer.

s
 L1
 L2
 L n-1

27

Graph Traversal: Implementation

Learn the basic structure of a graph

“Walk,” via edges, from a fixed starting
vertex s to all vertices reachable from s

Three states of vertices

undiscovered

discovered

fully-explored

28

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"

BFS(s)

mark s "discovered"

queue = { s }

while queue not empty

u = remove_first(queue)

for each edge {u,x}

if (x is undiscovered)

mark x discovered

append x on queue

mark u fully explored

Exercise: modify
code to number
vertices & compute
level numbers

29

BFS(v)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

1

30

BFS(v)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

2 3

31

BFS(v)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

3 4

32

BFS(v)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

4 5 6 7

33

BFS(v)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

5 6 7 8 9

34

BFS(v)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

8 9 10 11

35

BFS(v)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

10 11 12 13

36

BFS(v)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

37

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"

BFS(s)

mark s "discovered"

queue = { s }

while queue not empty

u = remove_first(queue)

for each edge {u,x}

if (x is undiscovered)

mark x discovered

append x on queue

mark u fully explored

Exercise: modify
code to number
vertices & compute
level numbers

38

BFS analysis

Each vertex is added to/removed from queue
at most once

Each edge is explored once from �
each end-point

Total cost O(m), m = # of edges

Exercise: extend
algorithm and
analysis to �
non-connected
graphs

39

Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from
v to x.

Edges into then-undiscovered vertices define a tree
– the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices �
u such that the shortest path (in G, not just the �

tree) from the root v is of length i.

All non-tree edges join vertices on the �
same or adjacent levels

not true
of every
spanning
tree!

40

BFS Application: Shortest Paths

1

2 3

10

5

4

9

12
8

13

6
7

11

0

1

2

3

4

can label by distances from start 

all edges connect same/adjacent levels

Tree (solid edges)  
gives shortest

paths from  
start vertex

41

Tree (solid edges)  
gives shortest

paths from  
start vertex

BFS Application: Shortest Paths

1

2 3

10

5

4

9

8

13

6 7

11

0

1

2

3

4

can label by distances from start 

all edges connect same/adjacent levels

12

42

Tree (solid edges)  
gives shortest

paths from  
start vertex

BFS Application: Shortest Paths

1

2 3

10

5
4

9

8

13

6 7

11

0

1

2

3

4
 can label by distances from start 
all edges connect same/adjacent levels

12

43

Tree (solid edges)  
gives shortest

paths from  
start vertex

BFS Application: Shortest Paths

1

2 3

10

5 4

9 8

13

6 7

11

0

1

2

3

4
 can label by distances from start 
all edges connect same/adjacent levels

12

44

Why fuss about trees?

Trees are simpler than graphs

Ditto for algorithms on trees vs algs on graphs

So, this is often a good way to approach a graph
problem: find a “nice” tree in the graph, i.e., one
such that non-tree edges have some simplifying
structure

E.g., BFS finds a tree s.t. level-jumps are minimized

DFS (next) finds a different tree, but it also has
interesting structure…

45

Q: Why not
create 2-d
array
Path[u,v]?

Graph Search Application:
Connected Components

Want to answer questions of the form:

given vertices u and v, is there a �
path from u to v?

Idea: create array A such that

A[u] = smallest numbered vertex that�
is connected to u. Question reduces �
to whether A[u]=A[v]?

46

Graph Search Application:
Connected Components

initial state: all v undiscovered�
for v = 1 to n do�

if state(v) != fully-explored then

BFS(v): setting A[u] ←v for each u found �

(and marking u discovered/fully-explored)�

endif

endfor

Total cost: O(n+m)

each edge is touched a constant number of times (twice)

works also with DFS

3.4 Testing Bipartiteness

48

Bipartite Graphs

Def. An undirected graph G = (V, E) is

bipartite if the nodes can be colored �
red or blue such that every edge has �
one red and one blue end.

Applications.

Stable marriage: men = red, women = blue

Scheduling: machines = red, jobs = blue

a bipartite graph

“bi-partite” means “two
parts.” An equivalent
definition: G is
bipartitite if you can
partition the node set
into 2 parts (say, blue/
red or left/right) so that
all edges join nodes in
different parts/no edge
has both ends in the
same part.

49

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

Many graph problems become:

easier if the underlying graph is bipartite (matching)

tractable if the underlying graph is bipartite (independent set)

Before attempting to design an algorithm, we need to
understand structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

50

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an
odd length cycle.

Pf. Impossible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

not bipartite
(not 2-colorable)

51

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is
bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

52

Case (i)

L1 L2 L3

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the
layers produced by BFS starting at node s. Exactly one of the
following holds.

(i) No edge of G joins two nodes of the same layer, and
G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

Suppose no edge joins two nodes in the same layer.

By previous lemma, all edges join nodes on adjacent levels.

Bipartition: �

 red = nodes on odd levels, �

 blue = nodes on even levels.

53

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the
layers produced by BFS starting at node s. Exactly one of the
following holds.

(i) No edge of G joins two nodes of the same layer, and
G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

Suppose (x, y) is an edge & x, y in same level Lj.

Let z = their lowest common ancestor in BFS tree.

Let Li be level containing z.

Consider cycle that takes edge from x to y,�
then tree from y to z, then tree from z to x.

Its length is 1 + (j-i) + (j-i), which is odd.

54

Obstruction to Bipartiteness

Cor: A graph G is bipartite iff it contains no odd
length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

NB: the proof is algorithmic--
in a non-bipartite graph, it
finds an odd cycle.

3.6 DAGs and Topological Ordering

56

Precedence Constraints

Precedence constraints. Edge (vi, vj) means task vi
must occur before vj.

Applications

Course prerequisites: course vi must be taken before vj

Compilation: must compile module vi before vj

Job Workflow: output of job vi is part of input to job vj

Manufacturing or assembly: sand it before you paint it…

Spreadsheet evaluation: cell vj depends on vi

57

Directed Acyclic Graphs

Def. A DAG is a directed acyclic graph, i.e., one that
contains no directed cycles.

Ex. Precedence constraints: edge (vi, vj) means vi must
precede vj.

Def. A topological order of a directed graph G = (V, E) is an
ordering of its nodes as v1, v2, …, vn so that for every edge
(vi, vj) we have i < j.

a DAG a topological ordering of that DAG –
all arrows go left-to-right

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

∀edge (vi, vj) , vi
finished before

vj started

58

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

Suppose that G has a topological order v1, …, vn �
and that G also has a directed cycle C.

Let va be the lowest-indexed node in C, and let vb be the node just
before va in the cycle; thus (vb, va) is an edge.

By our choice of a, we have a < b.

On the other hand, since (vb, va) is an edge and v1, …, vn is a
topological order, we must have b < a, a contradiction. ▪

v1 va vb vn

the supposed topological order: v1, …, vn

the directed cycle C

if all edges go L→R,
can’t loop back to
close a cycle

59

Directed Acyclic Graphs

Lemma.

 If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

60

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

Suppose that G is a DAG and every node has at least one incoming
edge. Let's see what happens.

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.

Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered �
between successive visits to w. C is a cycle.

w x u v

Why must
this happen?

61

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

Base case: true if n = 1.

Given DAG on n > 1 nodes, find a node v with no incoming edges.

G - { v } is a DAG, since deleting v cannot create cycles.

By inductive hypothesis, G - { v } has a topological ordering.

Place v first in topological ordering; then append nodes of G - { v }

in topological order. This is valid since v has no incoming edges. ▪

DAG

v

62

v1

Topological Ordering Algorithm: Example

Topological order:

v2 v3

v6 v5 v4

v7 v1

63

v2

Topological Ordering Algorithm: Example

Topological order: v1

v2 v3

v6 v5 v4

v7

64

v3

Topological Ordering Algorithm: Example

Topological order: v1, v2

v3

v6 v5 v4

v7

65

v4

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3

v6 v5 v4

v7

66

v5

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3, v4

v6 v5

v7

67

v6

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3, v4, v5

v6

v7

68

v7

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3, v4, v5, v6

v7

69

Topological order: v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Topological Ordering Algorithm: Example

70

Topological Sorting Algorithm

Maintain the following:

count[w] = (remaining) number of incoming edges to node w

S = set of (remaining) nodes with no incoming edges

Initialization:

count[w] = 0 for all w

count[w]++ for all edges (v,w)
O(m + n)

S = S ∪ {w} for all w with count[w]==0

Main loop:

while S not empty

remove some v from S

make v next in topo order
O(1) per node

for all edges from v to some w
O(1) per edge

decrement count[w]

add w to S if count[w] hits 0

Correctness: clear, I hope

Time: O(m + n) (assuming edge-list representation of graph)

71

Depth-First Search

Follow the first path you find as far as you can go

Back up to last unexplored edge when you reach a
dead end, then go as far you can

Naturally implemented using recursive calls or a
stack

72

DFS(v) – Recursive version

Global Initialization:

for all nodes v, v.dfs# = -1
// mark v "undiscovered” �
dfscounter = 0

DFS(v)

v.dfs# = dfscounter++
// v “discovered”, number it

for each edge (v,x)

if (x.dfs# = -1) // tree edge (x previously undiscovered)

DFS(x)

else …
 // code for back-, fwd-, parent,

 // edges, if needed

 // mark v “completed,” if needed

73

Non-tree edges

All non-tree edges join a vertex and one of
its descendents/ancestors in the DFS tree

No cross edges!

74

Why fuss about trees (again)?

BFS tree ≠ DFS tree, but, as with BFS, DFS
has found a tree in the graph s.t. non-tree
edges are “simple” – only descendant/
ancestor

Summary

Graphs –abstract relationships among pairs of objects

Terminology – node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected

Representation – edge list, adjacency matrix

Nodes vs Edges – m = O(n2), often less

BFS – Layers, queue, shortest paths, all edges go to same or

adjacent layer

DFS – recursion/stack; all edges ancestor/descendant

Algorithms – connected components, bipartiteness,

topological sort

75

