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CSE 417:  Algorithms and 
Computational Complexity


Winter 2009

Graphs and Graph Algorithms


Larry Ruzzo




Goals


Graphs: defns, examples, utility, terminology

Representation: input, internal

Traversal: Breadth- & Depth-first search


Three Algorithms:


Connected components


Bipartiteness


Topological sort
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Meg Ryan was in 
“French Kiss”  

with Kevin Kline


Meg Ryan was in  
“Sleepless in Seattle” 

with Tom Hanks


Kevin Bacon was in 
“Apollo 13”  

with Tom Hanks 
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Objects & Relationships


The Kevin Bacon Game:

Actors

Two are related if they’ve been in a movie together


Exam Scheduling:

Classes

Two are related if they have students in common


Traveling Salesperson Problem:

Cities

Two are related if can travel directly between them
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Graphs



An extremely important formalism for 
representing (binary) relationships


Objects: “vertices”, aka “nodes”

Relationships between pairs: “edges”, aka 
“arcs”

Formally, a graph G = (V, E) is a pair of sets, 
V the vertices and E the edges
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Undirected Graph   G = (V,E)
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Undirected Graph   G = (V,E)
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Undirected Graph   G = (V,E)
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Undirected Graph   G = (V,E)
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Undirected Graph   G = (V,E)

1 

2 
10 

9 

8 

3 

4 

5 
6 

7 

11 
12 

13 

“self- 
loop”


“multi-

 edge”




11


Graphs don’t live in Flatland

Geometrical drawing is mentally �
convenient, but mathematically�
irrelevant: 4 drawings, 1 graph.
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Directed Graph G = (V,E)
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Directed Graph G = (V,E)
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Directed Graph G = (V,E)
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Directed Graph G = (V,E)
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Directed Graph G = (V,E)
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A 

7 4 

3 

Specifying undirected �
graphs as input


What are the vertices?

Explicitly list them: �
{“A”, “7”, “3”, “4”}


What are the edges?

Either, set of edges �
{{A,3}, {7,4}, {4,3}, {4,A}}

Or, (symmetric) adjacency 
matrix:


€ 

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0
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A 

7 4 

3 

Specifying directed �
graphs as input


What are the vertices?

Explicitly list them: �
{“A”, “7”, “3”, “4”}


What are the edges?

Either, set of directed edges:  
{(A,4), (4,7), (4,3), (4,A), (A,3)}

Or, (nonsymmetric) 
adjacency matrix:


€ 

A 7 3 4
A 0 0 1 1
7 0 0 0 0
3 0 0 0 0
4 1 1 1 0
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Let G be an undirected graph with n vertices and m 
edges.  How are n and m related?

Since 


every edge connects two different vertices (no loops), 
and no two edges connect the same two vertices (no 
multi-edges), 


it must be true that:�


   
 0 ≤ m ≤ n(n-1)/2 = O(n2)


# Vertices vs # Edges
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More Cool Graph Lingo


A graph is called sparse if m << n2, otherwise it is 
dense


Boundary is somewhat fuzzy; O(n) edges is certainly 
sparse, Ω(n2) edges is dense.


Sparse graphs are common in practice

E.g., all planar graphs are sparse (m ≤ 3n-6, for n ≥ 3)


Q: which is a better run time, O(n+m) or O(n2)?


A: O(n+m) = O(n2), but n+m usually way better!
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Representing Graph  G = (V,E)�

Vertex set V = {v1, …, vn}


Adjacency Matrix   A

A[i,j] = 1 iff (vi,vj) ∈ E

Space is n2 bits


Advantages: 

O(1) test for presence or absence of edges.


Disadvantages: inefficient for sparse graphs, both in 
storage and access


m << n2


€ 

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

A 

7 4 3 

internally, indp of input format
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Representing Graph  G=(V,E)�
n vertices,  m edges


Adjacency List:

O(n+m) words


Advantages:

Compact for �
sparse graphs


Easily see all edges


Disadvantages

More complex data structure 


no O(1) edge test
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Representing Graph  G=(V,E)�
n vertices,  m edges


Adjacency List:

O(n+m) words


Back- and cross pointers more work to build, but 
allow easier traversal and deletion of edges, if 
needed,  (don’t bother if not)
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Graph Traversal


Learn the basic structure of a graph

“Walk,” via edges, from a fixed starting vertex 
s to all vertices reachable from s


Being orderly helps.  Two common ways:

Breadth-First Search

Depth-First Search
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Breadth-First Search


Completely explore the vertices in order of 
their distance from s


Naturally implemented using a queue
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Breadth-First Search


Idea:  Explore from s in all possible directions, layer by layer.


BFS algorithm.

L0 = { s }.

L1 = all neighbors of L0.

L2 = all nodes not in L0 or L1, and having an edge to a node in L1.

Li+1 = all nodes not in earlier layers, and having an edge to a node in Li.


Theorem.  For each i, Li consists of all nodes at distance �
(i.e., min path length) exactly i from s.  

Cor: There is a path from s to t iff t appears in some layer.


s
 L1
 L2
 L n-1
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Graph Traversal: Implementation


Learn the basic structure of a graph

“Walk,” via edges, from a fixed starting 
vertex s to all vertices reachable from s


Three states of vertices

undiscovered

discovered

fully-explored
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BFS(s) Implementation


Global initialization: mark all vertices "undiscovered" 

BFS(s) 


mark  s "discovered"

queue = { s }

while queue not empty


u = remove_first(queue)

for each edge {u,x}


if (x is undiscovered) 

mark x discovered

append x on queue


mark u fully explored


Exercise: modify 
code to number 
vertices & compute 
level numbers
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BFS(v)
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BFS(v)
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BFS(v)
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BFS(v)
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BFS(v)
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BFS(v)
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BFS(v)
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BFS(v)
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BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" 

BFS(s) 


mark  s "discovered"

queue = { s }

while queue not empty


u = remove_first(queue)

for each edge {u,x}


if (x is undiscovered) 

mark x discovered

append x on queue


mark u fully explored


Exercise: modify 
code to number 
vertices & compute 
level numbers
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BFS analysis


Each vertex is added to/removed from queue 
at most once


Each edge is explored once from �
each end-point


Total cost O(m), m = # of edges


Exercise: extend 
algorithm and 
analysis to �
non-connected 
graphs
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Properties of (Undirected) BFS(v)


BFS(v) visits x if and only if there is a path in G from 
v to x.

Edges into then-undiscovered vertices define a tree 
– the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices �
u such that the shortest path (in G, not just the �

tree) from the root v is of length i.

All non-tree edges join vertices on the �
same or adjacent levels


not true 
of every 
spanning 
tree!
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BFS Application: Shortest Paths
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Tree (solid edges)  
gives shortest 

paths from  
start vertex


BFS Application: Shortest Paths
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Tree (solid edges)  
gives shortest 

paths from  
start vertex


BFS Application: Shortest Paths
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Tree (solid edges)  
gives shortest 

paths from  
start vertex


BFS Application: Shortest Paths
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Why fuss about trees?


Trees are simpler than graphs

Ditto for algorithms on trees vs algs on graphs

So, this is often a good way to approach a graph 
problem: find a “nice” tree in the graph, i.e., one 
such that non-tree edges have some simplifying 
structure

E.g., BFS finds a tree s.t. level-jumps are minimized

DFS (next) finds a different tree, but it also has 
interesting structure…
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Q: Why not 
create 2-d 
array 
Path[u,v]?


Graph Search Application: 
Connected Components


Want to answer questions of the form:

given vertices u and v, is there a �
path from u to v?


Idea: create array A such that 

A[u] = smallest numbered vertex that�
is connected to u.  Question reduces �
to whether A[u]=A[v]?
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Graph Search Application: 
Connected Components


initial state: all v undiscovered�
for v = 1 to n do�

if state(v) != fully-explored then                                 

 
BFS(v): setting A[u] ←v for each u found �

 
(and marking u discovered/fully-explored)�

endif                                                                               

endfor


Total cost: O(n+m)

each edge is touched a constant number of times (twice)

works also with DFS




3.4  Testing Bipartiteness
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Bipartite Graphs


Def.  An undirected graph G = (V, E) is 

bipartite if the nodes can be colored �
red or blue such that every edge has �
one red and one blue end.


Applications.

Stable marriage:  men = red, women = blue

Scheduling:  machines = red, jobs = blue


a bipartite graph 

“bi-partite” means “two 
parts.”  An equivalent 
definition: G is 
bipartitite if you can 
partition the node set 
into 2 parts (say, blue/
red or left/right) so that 
all edges join nodes in 
different parts/no edge 
has both ends in the 
same part. 



49


Testing Bipartiteness


Testing bipartiteness.   Given a graph G, is it bipartite?

Many graph problems become:


easier if the underlying graph is bipartite (matching)

tractable if the underlying graph is bipartite (independent set)


Before attempting to design an algorithm, we need to 
understand structure of bipartite graphs.


v1 

v2 v3 

v6 v5 v4 

v7 

v2 

v4 

v5 

v7 

v1 

v3 

v6 

a bipartite graph G another drawing of G 
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An Obstruction to Bipartiteness


Lemma.  If a graph G is bipartite, it cannot contain an 
odd length cycle.


Pf.  Impossible to 2-color the odd cycle, let alone G.


bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 

not bipartite 
(not 2-colorable) 
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Case (i) 

L1 L2 L3 

Case (ii) 

L1 L2 L3 

Bipartite Graphs


Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers 
produced by BFS starting at node s.  Exactly one of the following holds.


(i)   No edge of G joins two nodes of the same layer, and G is 
bipartite.

(ii)  An edge of G joins two nodes of the same layer, and G contains an 
odd-length cycle (and hence is not bipartite).
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Case (i) 

L1 L2 L3 

Bipartite Graphs


Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.


(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.

(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).


Pf.  (i)

Suppose no edge joins two nodes in the same layer.

By previous lemma, all edges join nodes on adjacent levels.


 
 
 
 
Bipartition:  �

 
 
 
    red = nodes on odd levels, �

 
 
 
    blue = nodes on even levels.
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z = lca(x, y) 

(x, y) path from 
y to z 

path from 
z to x 

Bipartite Graphs


Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.


(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.

(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).


Pf.  (ii)

Suppose (x, y) is an edge & x, y in same level Lj.

Let z = their lowest common ancestor in BFS tree.

Let Li be level containing z.

Consider cycle that takes edge from x to y,�
then tree from y to z, then tree from z to x.

Its length is  1  +   (j-i)  +  (j-i),  which is odd.
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Obstruction to Bipartiteness

Cor:  A graph G is bipartite iff it contains no odd 
length cycle.


5-cycle C 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 

NB: the proof is algorithmic--
in a non-bipartite graph, it 
finds an odd cycle. 



3.6  DAGs and Topological Ordering
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Precedence Constraints


Precedence constraints.  Edge (vi, vj) means task vi 
must occur before vj.


Applications


Course prerequisites:  course vi must be taken before vj


Compilation: must compile module vi before vj


Job Workflow:  output of job vi is part of  input to job vj


Manufacturing or assembly: sand it before you paint it…


Spreadsheet evaluation: cell vj depends on vi
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Directed Acyclic Graphs


Def.  A DAG is a directed acyclic graph, i.e., one that 
contains no directed cycles.


Ex.  Precedence constraints:  edge (vi, vj) means vi must 
precede vj.


Def.  A topological order of a directed graph G = (V, E) is an 
ordering of its nodes as v1, v2, …, vn so that for every edge 
(vi, vj) we have i < j.


a DAG a topological ordering of that DAG –  
all arrows go left-to-right 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 

∀edge (vi, vj) , vi 
finished before  

vj started
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Directed Acyclic Graphs


Lemma.  If G has a topological order, then G is a DAG.


Pf.  (by contradiction)

Suppose that G has a topological order v1, …, vn �
and that G also has a directed cycle C.

Let va be the lowest-indexed node in C, and let vb be the node just 
before va in the cycle; thus (vb, va) is an edge.

By our choice of a, we have a < b.

On the other hand, since (vb, va) is an edge and v1, …, vn is a 
topological order, we must have b < a, a contradiction.   ▪


v1 va vb vn 

the supposed topological order:  v1, …, vn 

the directed cycle C 

if all edges go L→R, 
can’t loop back to 
close a cycle 
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Directed Acyclic Graphs


Lemma.  

    If G has a topological order, then G is a DAG.


Q.  Does every DAG have a topological ordering?


Q.  If so, how do we compute one?
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Directed Acyclic Graphs


Lemma.  If G is a DAG, then G has a node with no incoming edges.


Pf.  (by contradiction)

Suppose that G is a DAG and every node has at least one incoming 
edge.  Let's see what happens.

Pick any node v, and begin following edges backward from v.  Since v 
has at least one incoming edge (u, v) we can walk backward to u.

Then, since u has at least one incoming edge (x, u), we can walk 
backward to x.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered �
between successive visits to w.  C is a cycle.


w x u v 

Why must 
this happen?
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Directed Acyclic Graphs


Lemma.  If G is a DAG, then G has a topological ordering.


Pf.  (by induction on n)

Base case:  true if n = 1.

Given DAG on n > 1 nodes, find a node v with no incoming edges.

G - { v } is a DAG, since deleting v cannot create cycles.

By inductive hypothesis, G - { v } has a topological ordering.

Place v first in topological ordering; then append nodes of G - { v }

in topological order. This is valid since v has no incoming edges.   ▪


DAG 

v 
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v1 

Topological Ordering Algorithm:  Example


Topological order:   

v2 v3 

v6 v5 v4 

v7 v1 
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v2 

Topological Ordering Algorithm:  Example


Topological order:  v1 

v2 v3 

v6 v5 v4 

v7 
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v3 

Topological Ordering Algorithm:  Example


Topological order:  v1, v2 

v3 

v6 v5 v4 

v7 
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v4 

Topological Ordering Algorithm:  Example


Topological order:  v1, v2, v3 

v6 v5 v4 

v7 
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v5 

Topological Ordering Algorithm:  Example


Topological order:  v1, v2, v3, v4 

v6 v5 

v7 
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v6 

Topological Ordering Algorithm:  Example


Topological order:  v1, v2, v3, v4, v5 

v6 

v7 
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v7 

Topological Ordering Algorithm:  Example


Topological order:  v1, v2, v3, v4, v5, v6 

v7 
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Topological order:  v1, v2, v3, v4, v5, v6, v7. 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 

Topological Ordering Algorithm:  Example
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Topological Sorting Algorithm

Maintain the following:


count[w] = (remaining) number of incoming edges to node w

S = set of (remaining) nodes with no incoming edges


Initialization:  

count[w] = 0 for all w

count[w]++ for all edges (v,w) 
O(m + n)

S = S ∪ {w} for all w with count[w]==0


Main loop: 

while S not empty


remove some v from S

make v next in topo order 
O(1) per node

for all edges from v to some w 
O(1) per edge

decrement count[w]

add w to S if count[w] hits 0


Correctness: clear, I hope

Time: O(m + n)  (assuming edge-list representation of graph)
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Depth-First Search


Follow the first path you find as far as you can go


Back up to last unexplored edge when you reach a 
dead end, then go as far you can 


Naturally implemented using recursive calls or a 
stack
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DFS(v) – Recursive version

Global Initialization: 


for all nodes v, v.dfs# = -1 
// mark v "undiscovered” �
dfscounter = 0


DFS(v) 

v.dfs# = dfscounter++ 
// v “discovered”, number it

for each edge (v,x)


if (x.dfs# = -1)             // tree edge (x previously  undiscovered)



 
DFS(x)


else … 
                     // code for back-, fwd-, parent,


 
 
                     // edges, if needed


 
 
                     // mark v “completed,” if needed
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Non-tree edges


All non-tree edges join a vertex and one of 
its descendents/ancestors in the DFS tree


No cross edges!
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Why fuss about trees (again)?


BFS tree ≠ DFS tree, but, as with BFS, DFS 
has found a tree in the graph s.t. non-tree 
edges are “simple” – only descendant/
ancestor




Summary


Graphs –abstract relationships among pairs of objects


Terminology – node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected


Representation – edge list, adjacency matrix


Nodes vs Edges – m = O(n2), often less

BFS – Layers, queue, shortest paths, all edges go to same or 

adjacent layer


DFS – recursion/stack; all edges ancestor/descendant

Algorithms – connected components, bipartiteness, 

topological sort 
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