CSE 4I7: Algorithms and Computational Complexity

Winter 2009
Graphs and Graph Algorithms
Larry Ruzzo

Goals

Graphs: defns, examples, utility, terminology Representation: input, internal
Traversal: Breadth- \& Depth-first search
Three Algorithms:
Connected components
Bipartiteness
Topological sort

Objects \& Relationships

The Kevin Bacon Game:
Actors
Two are related if they've been in a movie together Exam Scheduling:

Classes
Two are related if they have students in common
Traveling Salesperson Problem:
Cities
Two are related if can travel directly between them

Graphs

An extremely important formalism for representing (binary) relationships Objects: "vertices", aka "nodes"
Relationships between pairs: "edges", aka "arcs"
Formally, a graph $G=(V, E)$ is a pair of sets, V the vertices and E the edges

Undirected Graph $\quad G=(\mathrm{V}, \mathrm{E})$

Undirected Graph $\quad G=(V, E)$

Specifying undirected

 graphs as inputWhat are the vertices?
Explicitly list them:
\{"A", "7", " 3 ", " 4 "\}

What are the edges?
Either, set of edges $\{\{A, 3\},\{7,4\},\{4,3\},\{4, A\}\}$ Or, (symmetric) adjacency matrix:

	A	7	3	4
A	0	0	1	1
7	0	0	0	1
3	1	0	0	1
4	1	1	1	0

\# Vertices vs \# Edges

Let G be an undirected graph with n vertices and m edges. How are n and m related?
Since
every edge connects two different vertices (no loops), and no two edges connect the same two vertices (no multi-edges),
it must be true that:

$$
0 \leq m \leq n(n-I) / 2=O\left(n^{2}\right)
$$

Specifying directed

 graphs as inputWhat are the vertices?
Explicitly list them:
\{"A", "7", " 3 ", " 4 "\}

What are the edges?
Either, set of directed edges:
$\{(\mathrm{A}, 4),(4,7),(4,3),(4, \mathrm{~A}),(\mathrm{A}, 3)\}$
Or, (nonsymmetric)
adjacency matrix:

	A	7	3	4
A	0	0	1	1
7	0	0	0	0
3	0	0	0	0
4	1	1	1	0

More Cool Graph Lingo

A graph is called sparse if $m \ll n^{2}$, otherwise it is dense

Boundary is somewhat fuzzy; $\mathrm{O}(\mathrm{n})$ edges is certainly sparse, $\Omega\left(n^{2}\right)$ edges is dense.
Sparse graphs are common in practice
E.g., all planar graphs are sparse ($m \leq 3 n-6$, for $n \geq 3$)

Q : which is a better run time, $\mathrm{O}(\mathrm{n}+\mathrm{m})$ or $\mathrm{O}\left(\mathrm{n}^{2}\right)$?
A: $O(n+m)=O\left(n^{2}\right)$, but $n+m$ usually way better!

Representing Graph $G=(\mathrm{V}, \mathrm{E})$

 internally, indp of input formatVertex set $V=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
Adjacency Matrix A

$A[i, j]=I$ iff $\left(v_{i}, v_{j}\right) \in E$
Space is n^{2} bits

Advantages:

O(I) test for presence or absence of edges.
Disadvantages: inefficient for sparse graphs, both in storage and access

Representing Graph G=(V,E)

n vertices, m edges
Adjacency List:
$\mathrm{O}(\mathrm{n}+\mathrm{m})$ words

Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, if needed, (don't bother if not)

Representing Graph $G=(V, E)$
n vertices, m edges
Adjacency List:
$\mathrm{O}(\mathrm{n}+\mathrm{m})$ words
Advantages:
Compact for sparse graphs Easily see all edges

Disadvantages

More complex data structure no O(I) edge test

Graph Traversal

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex s to all vertices reachable from s

Being orderly helps. Two common ways:
Breadth-First Search
Depth-First Search

Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue

Breadth-First Search

Idea: Explore from s in all possible directions, layer by layer.
BFS algorithm.

$L_{0}=\{\mathrm{s}\}$.

$L_{1}=$ all neighbors of L_{0}.
$L_{2}=$ all nodes not in L_{0} or L_{1}, and having an edge to a node in L_{1}.
$\mathrm{L}_{\mathrm{i}+1}=$ all nodes not in earlier layers, and having an edge to a node in L_{i}.
Theorem. For each i, L_{i} consists of all nodes at distance
(i.e., min path length) exactly i from s.

Cor: There is a path from s to t iff t appears in some layer.

Graph Traversal: Implementation

Learn the basic structure of a graph "Walk," via edges, from a fixed starting vertex s to all vertices reachable from s

Three states of vertices
undiscovered
discovered
fully-explored

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" BFS(s)
mark s "discovered"
queue $=\{s\}$
while queue not empty
$u=$ remove_first(queue)
for each edge $\{u, x\}$
if (x is undiscovered)
mark x discovered
append x on queue
mark u fully explored

Exercise: extend algorithm and analysis to non-connected

BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex

Each vertex is added to/removed from queue at most once

Each edge is explored once from each end-point

Total cost $O(m), m=\#$ of edges

BFS analysis

-

Properties of (Undirected) BFS(v)

$B F S(v)$ visits x if and only if there is a path in G from v to x .
Edges into then-undiscovered vertices define a tree - the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i. All non-tree edges join vertices on the same or adjacent levels

BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from
 all edges connect same/adjacent levels ${ }_{4}$

BFS Application: Shortest Paths

BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from

Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
E.g., BFS finds a tree s.t. level-jumps are minimized DFS (next) finds a different tree, but it also has interesting structure...

Graph Search Application: Connected Components

Want to answer questions of the form:
given vertices u and v, is there a
path from u to v ?
Idea: create array A such that $\mathrm{A}[\mathrm{u}]=$ smallest numbered vertex that is connected to u. Question reduces to whether $A[u]=A[v]$?

Q: Why not create 2-d array Path[u,v]?

Graph Search Application: Connected Components

initial state: all v undiscovered
for $v=1$ to n do
if state(v) != fully-explored then
BFS(v): setting $\mathrm{A}[u] \leftarrow v$ for each u found
(and marking u discovered/fully-explored) endif
endfor
Total cost: $\mathrm{O}(\mathrm{n}+\mathrm{m})$
each edge is touched a constant number of times (twice) works also with DFS

Bipartite Graphs

3.4 Testing Bipartiteness

Def. An undirected graph $G=(V, E)$ is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.
Stable marriage: men $=$ red, women $=$ blue Scheduling: machines = red, jobs = blue

a bipartite graph
bi-partite" means "two parts." An equivalent definition: G is bipartitite if you can partition the node set into 2 parts (say, blue/ red or left/right) so that all edges join nodes in different parts/no edge has both ends in the same part.

Testing Bipartiteness

Testing bipartiteness. Given a graph G , is it bipartite? Many graph problems become:
easier if the underlying graph is bipartite (matching) tractable if the underlying graph is bipartite (independent set) Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

a bipartite graph G

another drawing of G

Bipartite Graphs

Lemma. Let G be a connected graph, and let $\mathrm{L}_{0}, \ldots, \mathrm{~L}_{\mathrm{k}}$ be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is
bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Impossible to 2-color the odd cycle, let alone G.

bipartite (2-colorable)

not bipartite (not 2-colorable)

not bipartite (not 2-colorable)

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and

G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
Suppose no edge joins two nodes in the same layer.
By previous lemma, all edges join nodes on adjacent levels.
Bipartition:
red = nodes on odd levels,
blue $=$ nodes on even levels.

Bipartite Graphs

Lemma. Let G be a connected graph, and let $\mathrm{L}_{0}, \ldots, \mathrm{~L}_{\mathrm{k}}$ be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and

G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)
Suppose (x, y) is an edge $\& x, y$ in same level Lj .

et $z=$ their lowest common ancestor in BFS tree.
Let Li be level containing z.
Consider cycle that takes edge from x to y,
then tree from y to z, then tree from z to x.
Its length is $1+(\mathrm{j}-\mathrm{i})+(\mathrm{j}-\mathrm{i})$, which is odd.

3.6 DAGs and Topological Ordering

Obstruction to Bipartiteness

Cor: A graph G is bipartite iff it contains no odd length cycle.

NB: the proof is algorithmic-in a non-bipartite graph, it finds an odd cycle.

bipartite
(2-colorable)

not bipartite (not 2-colorable)

Precedence Constraints

Precedence constraints. Edge $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ means task v_{i} must occur before v_{i}.

Applications
Course prerequisites: course v_{i} must be taken before v_{i}
Compilation: must compile module v_{i} before v_{i}
Job Workflow: output of job v_{i} is part of input to job v_{j}
Manufacturing or assembly: sand it before you paint it...
Spreadsheet evaluation: cell v_{i} depends on v_{i}

Directed Acyclic Graphs

Def. A DAG is a directed acyclic graph, i.e., one that contains no directed cycles.

Ex. Precedence constraints: edge $\left(v_{i}, v_{i}\right)$ means v_{i} must precede v_{j}.

Def. A topological order of a directed graph $G=(V, E)$ is an ordering of its nodes as $v_{1}, v_{2}, \ldots, v_{n}$ so that for every edge $\left(v_{i}, v_{j}\right)$ we have $\mathrm{i}<\mathrm{j}$

Directed Acyclic Graphs

Lemma.
If G has a topological order, then G is a DAG.
Q. Does every DAG have a topological ordering?
Q. If so, how do we compute one?

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.
Pf. (by contradiction)
if all edges go $L \rightarrow R$, can't loop back to close a cycle

Suppose that G has a topological order $\mathrm{v}_{\mathrm{l}}, \ldots, \mathrm{v}_{\mathrm{n}}$ and that G also has a directed cycle C .
Let v_{a} be the lowest-indexed node in C , and let v_{b} be the node just before v_{a} in the cycle; thus $\left(v_{b}, v_{a}\right)$ is an edge.
By our choice of a , we have $\mathrm{a}<\mathrm{b}$.
On the other hand, since $\left(v_{b}, v_{a}\right)$ is an edge and v_{1}, \ldots, v_{n} is a
topological order, we must have $\mathrm{b}<\mathrm{a}$, a contradiction. -

the supposed topological order: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{n}$

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)
Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk
backward to x.
Repeat until we visit a node, say w, twice.
Why must
this happen?
Let C be the sequence of nodes encountered
between successive visits to w. C is a cycle.

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.
Pf. (by induction on n)
Base case: true if $\mathrm{n}=1$.
Given DAG on $n>I$ nodes, find a node v with no incoming edges. G-\{v\} is a DAG, since deleting v cannot create cycles. By inductive hypothesis, $G-\{v\}$ has a topological ordering. Place v first in topological ordering; then append nodes of $G-\{v\}$ in topological order. This is valid since v has no incoming edges. -

To compute a topological ordering of G :
Find a node v with no incoming edges and order it first Delete v from G
Recursively compute a topological ordering of $G-\{v\}$

Topological Ordering Algorithm: Example

Topological Ordering Algorithm: Example

Topological order:

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}$

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$

Topological Ordering Algorithm: Example

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$

Topological Ordering Algorithm: Example (1)

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}$.

Topological Sorting Algorithm

Maintain the following:
count[w] = (remaining) number of incoming edges to node w
$S=$ set of (remaining) nodes with no incoming edges
Initialization:

Main loop:
while S not empty
remove some v from S
make v next in topo order
for all edges from v to some w decrement count[w]
add w to S if count[w] hits 0
Correctness: clear, I hope
Time: $\mathrm{O}(\mathrm{m}+\mathrm{n})$ (assuming edge-list representation of graph)

DFS(v) - Recursive version

Global Initialization:
for all nodes v, v.dfs\# = - I // mark v "undiscovered" dfscounter $=0$

DFS(v)
v.dfs\# = dfscounter++ // v "discovered", number it
for each edge (v, x)
if (x.dfs\# = -I) // tree edge (x previously undiscovered) DFS(x)
else ... // code for back-, fwd-, parent,
// edges, if needed
// mark v "completed," if needed

Non-tree edges

All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

No cross edges!

Why fuss about trees (again)?

BFS tree \neq DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple" - only descendant/ ancestor

