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CSE 417:  Algorithms and 
Computational Complexity!

Winter 2009!

Graphs and Graph Algorithms!

Larry Ruzzo!

Goals!

Graphs: defns, examples, utility, terminology!

Representation: input, internal!

Traversal: Breadth- & Depth-first search!

Three Algorithms:!

!Connected components!

!Bipartiteness!

!Topological sort!
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Meg Ryan was in!

“French Kiss” !

with Kevin Kline"

Meg Ryan was in !

“Sleepless in Seattle”!

with Tom Hanks"

Kevin Bacon was in !

“Apollo 13” !

with Tom Hanks "
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Objects & Relationships!

The Kevin Bacon Game:!
Actors!

Two are related if they’ve been in a movie together!

Exam Scheduling:!
Classes!

Two are related if they have students in common!

Traveling Salesperson Problem:!
Cities!

Two are related if can travel directly between them!
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Graphs!!

An extremely important formalism for 
representing (binary) relationships!

Objects: “vertices”, aka “nodes”!

Relationships between pairs: “edges”, aka 
“arcs”!

Formally, a graph G = (V, E) is a pair of sets, 
V the vertices and E the edges!
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Undirected Graph   G = (V,E)!
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Undirected Graph   G = (V,E)!
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Graphs don’t live in Flatland!

Geometrical drawing is mentally "
convenient, but mathematically"
irrelevant: 4 drawings, 1 graph.!
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Directed Graph G = (V,E)!
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Directed Graph G = (V,E)!
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Directed Graph G = (V,E)!
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Directed Graph G = (V,E)!
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Directed Graph G = (V,E)!
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Specifying undirected "
graphs as input!

What are the vertices?!

Explicitly list them: "
{“A”, “7”, “3”, “4”}!

What are the edges?!

Either, set of edges "
{{A,3}, {7,4}, {4,3}, {4,A}}!

Or, (symmetric) adjacency 
matrix:!

! 

A 7 3 4

A 0 0 1 1

7 0 0 0 1

3 1 0 0 1

4 1 1 1 0
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Specifying directed "
graphs as input!

What are the vertices?!

Explicitly list them: "
{“A”, “7”, “3”, “4”}!

What are the edges?!

Either, set of directed edges:  
{(A,4), (4,7), (4,3), (4,A), (A,3)}!

Or, (nonsymmetric) 
adjacency matrix:!

! 

A 7 3 4

A 0 0 1 1

7 0 0 0 0

3 0 0 0 0

4 1 1 1 0
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Let G be an undirected graph with n vertices and m 
edges.  How are n and m related?!

Since !

every edge connects two different vertices (no loops), 
and no two edges connect the same two vertices (no 
multi-edges), !

it must be true that:"

!   ! 0 ! m ! n(n-1)/2 = O(n2)!

# Vertices vs # Edges!

20!

More Cool Graph Lingo!

A graph is called sparse if m << n2, otherwise it is 
dense!

Boundary is somewhat fuzzy; O(n) edges is certainly 
sparse, !(n2) edges is dense.!

Sparse graphs are common in practice!

E.g., all planar graphs are sparse (m ! 3n-6, for n " 3)!

Q: which is a better run time, O(n+m) or O(n2)?!

A: O(n+m) = O(n2), but n+m usually way better!!
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Representing Graph  G = (V,E)"

Vertex set V = {v1, …, vn}!

Adjacency Matrix   A!

A[i,j] = 1 iff (vi,vj) # E!

Space is n2 bits!

Advantages: !

O(1) test for presence or absence of edges.!

Disadvantages: inefficient for sparse graphs, both in 

storage and access!

m << n2"

! 

A 7 3 4

A 0 0 1 1

7 0 0 0 1

3 1 0 0 1

4 1 1 1 0

A 

7 4 3 

internally, indp of input format"
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Representing Graph  G=(V,E)"
n vertices,  m edges!

Adjacency List:!
O(n+m) words!

Advantages:!

Compact for "
sparse graphs!

Easily see all edges!

Disadvantages!

More complex data structure !

no O(1) edge test!
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Representing Graph  G=(V,E)"
n vertices,  m edges!

Adjacency List:!
O(n+m) words!

Back- and cross pointers more work to build, but 
allow easier traversal and deletion of edges, if 
needed,  (don’t bother if not)!
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Graph Traversal!

Learn the basic structure of a graph!

“Walk,” via edges, from a fixed starting vertex 
s to all vertices reachable from s!

Being orderly helps.  Two common ways:!

Breadth-First Search!

Depth-First Search!
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Breadth-First Search!

Completely explore the vertices in order of 
their distance from s!

Naturally implemented using a queue!
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Breadth-First Search!

Idea:  Explore from s in all possible directions, layer by layer.!

BFS algorithm.!
L0 = { s }.!

L1 = all neighbors of L0.!

L2 = all nodes not in L0 or L1, and having an edge to a node in L1.!

Li+1 = all nodes not in earlier layers, and having an edge to a node in Li.!

Theorem.  For each i, Li consists of all nodes at distance "
(i.e., min path length) exactly i from s.  !

Cor: There is a path from s to t iff t appears in some layer.!

s! L1! L2! L n-1!
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Graph Traversal: Implementation!

Learn the basic structure of a graph!

“Walk,” via edges, from a fixed starting 
vertex s to all vertices reachable from s!

Three states of vertices!
undiscovered!

discovered!

fully-explored!
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BFS(s) Implementation!

Global initialization: mark all vertices "undiscovered" !
BFS(s) !

mark  s "discovered"!

queue = { s }!

while queue not empty!

u = remove_first(queue)!

for each edge {u,x}!

if (x is undiscovered) !

mark x discovered!

append x on queue!

mark u fully explored!

Exercise: modify 

code to number 

vertices & compute 
level numbers"
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BFS(v)!
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BFS(v)!
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BFS(v)!
1 

2 
3 

10 

5 

4 

9 

12 

8 

13 

6 

7 

11 

Queue:!

4 5 6 7!



33!

BFS(v)!
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BFS(v)!
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BFS(v)!
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BFS(s) Implementation!

Global initialization: mark all vertices "undiscovered" !
BFS(s) !

mark  s "discovered"!

queue = { s }!

while queue not empty!

u = remove_first(queue)!

for each edge {u,x}!

if (x is undiscovered) !

mark x discovered!

append x on queue!

mark u fully explored!

Exercise: modify 

code to number 

vertices & compute 
level numbers"

38!

BFS analysis!

Each vertex is added to/removed from queue 
at most once!

Each edge is explored once from "
each end-point!

Total cost O(m), m = # of edges!

Exercise: extend 
algorithm and 
analysis to "
non-connected 
graphs!
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Properties of (Undirected) BFS(v)!

BFS(v) visits x if and only if there is a path in G from 
v to x.!

Edges into then-undiscovered vertices define a tree 
– the "breadth first spanning tree" of G!

Level i in this tree are exactly those vertices "
u such that the shortest path (in G, not just the "

tree) from the root v is of length i.!

All non-tree edges join vertices on the "
same or adjacent levels!

not true 
of every 
spanning 
tree!!
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BFS Application: Shortest Paths!
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Tree (solid edges) !

gives shortest "

paths from !
start vertex"

BFS Application: Shortest Paths!
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Tree (solid edges) !

gives shortest "

paths from !
start vertex"

BFS Application: Shortest Paths!
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Tree (solid edges) !

gives shortest "

paths from !
start vertex"

BFS Application: Shortest Paths!
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4" can label by distances from start!

all edges connect same/adjacent levels"
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Why fuss about trees?!

Trees are simpler than graphs!

Ditto for algorithms on trees vs algs on graphs!

So, this is often a good way to approach a graph 
problem: find a “nice” tree in the graph, i.e., one 
such that non-tree edges have some simplifying 
structure!

E.g., BFS finds a tree s.t. level-jumps are minimized!

DFS (next) finds a different tree, but it also has 
interesting structure…!
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Q: Why not 

create 2-d 

array 

Path[u,v]?"

Graph Search Application: 
Connected Components!

Want to answer questions of the form:!

given vertices u and v, is there a "
path from u to v?!

Idea: create array A such that !

A[u] = smallest numbered vertex that"
is connected to u.  Question reduces "
to whether A[u]=A[v]?!

46!

Graph Search Application: 
Connected Components!

initial state: all v undiscovered"
for v = 1 to n do"
!if state(v) != fully-explored then                                 
! !BFS(v): setting A[u] $v for each u found "
! !(and marking u discovered/fully-explored) "

!endif                                                                               
endfor!

Total cost: O(n+m)!
each edge is touched a constant number of times (twice)!

works also with DFS!

3.4  Testing Bipartiteness!

48!

Bipartite Graphs!

Def.  An undirected graph G = (V, E) is !
bipartite if the nodes can be colored "
red or blue such that every edge has "
one red and one blue end.!

Applications.!
Stable marriage:  men = red, women = blue!
Scheduling:  machines = red, jobs = blue!

a bipartite graph 

“bi-partite” means “two 

parts.”  An equivalent 
definition: G is 

bipartitite if you can 
partition the node set 

into 2 parts (say, blue/

red or left/right) so that 
all edges join nodes in 

different parts/no edge 
has both ends in the 

same part. 
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Testing Bipartiteness!

Testing bipartiteness.   Given a graph G, is it bipartite?!
Many graph problems become:!

easier if the underlying graph is bipartite (matching)!

tractable if the underlying graph is bipartite (independent set)!

Before attempting to design an algorithm, we need to 
understand structure of bipartite graphs.!

v1 

v2 v3 

v6 v5 v4 

v7 

v2 

v4 

v5 

v7 

v1 

v3 

v6 

a bipartite graph G another drawing of G 
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An Obstruction to Bipartiteness!

Lemma.  If a graph G is bipartite, it cannot contain an 
odd length cycle.!

Pf.  Impossible to 2-color the odd cycle, let alone G.!

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 

not bipartite 
(not 2-colorable) 

51!

Case (i) 

L1 L2 L3 

Case (ii) 

L1 L2 L3 

Bipartite Graphs!

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers 

produced by BFS starting at node s.  Exactly one of the following holds.!

(i)   No edge of G joins two nodes of the same layer, and G is 

bipartite.!

(ii)  An edge of G joins two nodes of the same layer, and G contains an 

odd-length cycle (and hence is not bipartite).!

52!

Case (i) 

L1 L2 L3 

Bipartite Graphs!

Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.!

(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.!
(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).!

Pf.  (i)!
Suppose no edge joins two nodes in the same layer.!
By previous lemma, all edges join nodes on adjacent levels.!
! ! ! ! !Bipartition:  "
! ! ! !    red = nodes on odd levels, "
! ! ! !    blue = nodes on even levels.!
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z = lca(x, y) 

(x, y) path from 
y to z 

path from 
z to x 

Bipartite Graphs!

Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.!

(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.!
(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).!

Pf.  (ii)!
Suppose (x, y) is an edge & x, y in same level Lj.!
Let z = their lowest common ancestor in BFS tree.!
Let Li be level containing z.!
Consider cycle that takes edge from x to y, "
then tree from y to z, then tree from z to x.!
Its length is  1  +   (j-i)  +  (j-i),  which is odd.!

54!

Obstruction to Bipartiteness!

Cor:  A graph G is bipartite iff it contains no odd 
length cycle.!

5-cycle C 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 

NB: the proof is algorithmic--

in a non-bipartite graph, it 
finds an odd cycle. 

3.6  DAGs and Topological Ordering!

56!

Precedence Constraints!

Precedence constraints.  Edge (vi, vj) means task vi 
must occur before vj.!

Applications!

Course prerequisites:  course vi must be taken before vj!

Compilation: must compile module vi before vj!

Job Workflow:  output of job vi is part of  input to job vj!

Manufacturing or assembly: sand it before you paint it…!

Spreadsheet evaluation: cell vj depends on vi!
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Directed Acyclic Graphs!

Def.  A DAG is a directed acyclic graph, i.e., one that 
contains no directed cycles.!

Ex.  Precedence constraints:  edge (vi, vj) means vi must 
precede vj.!

Def.  A topological order of a directed graph G = (V, E) is an 
ordering of its nodes as v1, v2, …, vn so that for every edge 
(vi, vj) we have i < j.!

a DAG a topological ordering of that DAG –  
all arrows go left-to-right 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 

!edge (vi, vj) , vi 
finished before  

vj started!
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Directed Acyclic Graphs!

Lemma.  If G has a topological order, then G is a DAG.!

Pf.  (by contradiction)!

Suppose that G has a topological order v1, …, vn "

and that G also has a directed cycle C.!

Let va be the lowest-indexed node in C, and let vb be the node just 

before va in the cycle; thus (vb, va) is an edge.!

By our choice of a, we have a < b.!

On the other hand, since (vb, va) is an edge and v1, …, vn is a 

topological order, we must have b < a, a contradiction.   "!

v1 va vb vn 

the supposed topological order:  v1, …, vn 

the directed cycle C 

if all edges go L"R, 
can’t loop back to 
close a cycle !
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Directed Acyclic Graphs!

Lemma.  !
    If G has a topological order, then G is a DAG.!

Q.  Does every DAG have a topological ordering?!

Q.  If so, how do we compute one?!
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Directed Acyclic Graphs!

Lemma.  If G is a DAG, then G has a node with no incoming edges.!

Pf.  (by contradiction)!

Suppose that G is a DAG and every node has at least one incoming 

edge.  Let's see what happens.!

Pick any node v, and begin following edges backward from v.  Since v 

has at least one incoming edge (u, v) we can walk backward to u.!

Then, since u has at least one incoming edge (x, u), we can walk 

backward to x.!

Repeat until we visit a node, say w, twice.!

Let C be the sequence of nodes encountered "

between successive visits to w.  C is a cycle.!

w x u v 

Why must 
this happen?!
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Directed Acyclic Graphs!

Lemma.  If G is a DAG, then G has a topological ordering.!

Pf.  (by induction on n)!

Base case:  true if n = 1.!

Given DAG on n > 1 nodes, find a node v with no incoming edges.!

G - { v } is a DAG, since deleting v cannot create cycles.!

By inductive hypothesis, G - { v } has a topological ordering.!

Place v first in topological ordering; then append nodes of G - { v }!

in topological order. This is valid since v has no incoming edges.   "!

DAG 

v 
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v1 

Topological Ordering Algorithm:  Example!

Topological order:   

v2 v3 

v6 v5 v4 

v7 v1 
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v2 

Topological Ordering Algorithm:  Example!

Topological order:  v1 

v2 v3 

v6 v5 v4 

v7 
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v3 

Topological Ordering Algorithm:  Example!

Topological order:  v1, v2 

v3 

v6 v5 v4 

v7 
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v4 

Topological Ordering Algorithm:  Example!

Topological order:  v1, v2, v3 

v6 v5 v4 

v7 
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v5 

Topological Ordering Algorithm:  Example!

Topological order:  v1, v2, v3, v4 

v6 v5 

v7 
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v6 

Topological Ordering Algorithm:  Example!

Topological order:  v1, v2, v3, v4, v5 

v6 

v7 
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v7 

Topological Ordering Algorithm:  Example!

Topological order:  v1, v2, v3, v4, v5, v6 

v7 
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Topological order:  v1, v2, v3, v4, v5, v6, v7. 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 

Topological Ordering Algorithm:  Example!
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Topological Sorting Algorithm!

Maintain the following:!

count[w] = (remaining) number of incoming edges to node w!

S = set of (remaining) nodes with no incoming edges!

Initialization:  !

count[w] = 0 for all w!

count[w]++ for all edges (v,w) !O(m + n)!

S = S % {w} for all w with count[w]==0!

Main loop: !

while S not empty!

remove some v from S!

make v next in topo order !O(1) per node!

for all edges from v to some w !O(1) per edge!

decrement count[w]!

add w to S if count[w] hits 0!

Correctness: clear, I hope!

Time: O(m + n)  (assuming edge-list representation of graph)!
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Depth-First Search!

Follow the first path you find as far as you can go!

Back up to last unexplored edge when you reach a 
dead end, then go as far you can !

Naturally implemented using recursive calls or a 
stack!

72!

DFS(v) – Recursive version!

Global Initialization: !

for all nodes v, v.dfs# = -1 !// mark v "undiscovered” "
dfscounter = 0!

DFS(v) !

v.dfs# = dfscounter++ !// v “discovered”, number it!

for each edge (v,x)!

!if (x.dfs# = -1)             // tree edge (x previously  undiscovered)!

! !DFS(x)!

!else … !                     // code for back-, fwd-, parent,!

! ! !                     // edges, if needed!

! ! !                     // mark v “completed,” if needed!
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Non-tree edges!

All non-tree edges join a vertex and one of 
its descendents/ancestors in the DFS tree!

No cross edges!!

74!

Why fuss about trees (again)?!

BFS tree ! DFS tree, but, as with BFS, DFS 
has found a tree in the graph s.t. non-tree 
edges are “simple” – only descendant/
ancestor!

Summary!

Graphs –abstract relationships among pairs of objects!

Terminology – node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected!

Representation – edge list, adjacency matrix!

Nodes vs Edges – m = O(n2), often less!

BFS – Layers, queue, shortest paths, all edges go to same or 
adjacent layer!

DFS – recursion/stack; all edges ancestor/descendant!

Algorithms – connected components, bipartiteness, 
topological sort !

75!


