CSE 4I7: Algorithms and

 Computational Complexity
Lecture 2: Analysis

Winter 2009
Larry Ruzzo

Defining Efficiency

"Runs fast on typical real problem instances"

Pro:
sensible, bottom-line-oriented

Con:

moving target (diff computers, compilers, Moore's law) highly subjective (how fast is "fast"? what's "typical"?)

Measuring efficiency

Time $\approx \#$ of instructions executed in a simple programming language
only simple operations (+,*,-,,,if,call,...)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long string,...) built in; write it/charge for it as above
No fixed bound on the memory size

We left out things but...

Things we've dropped
memory hierarchy
disk, caches, registers have many orders of magnitude differences in access time
not all instructions take the same time in practice
different computers have different primitive instructions
However,
the RAM model is useful for designing algorithms and measuring their efficiency
one can usually tune implementations so that the hierarchy etc. is not a huge factor

Complexity

 analysis

Problem size n

Worst-case complexity: max \# steps algorithm takes on any input of size n
Best-case complexity: min \# steps algorithm takes on any input of size n
Average-case complexity: avg \# steps algorithm takes on inputs of size n

Pros and cons:

Best-case

unrealistic oversell
Average-case
over what probability distribution? (different people may
have different "average" problems)
analysis often hard
Worst-case
a fast algorithm has a comforting guarantee
maybe too pessimistic

General Goals

Characterize growth rate of (worst-case) run time as a function of problem size, up to a constant factor Why not try to be more precise?

Technological variations (computer, compiler, OS, ...)
easily $10 x$ or more
Being more precise is a ton of work
A key question is "scale up": if I can afford to do it today, how much longer will it take when my business problems are twice as large? (E.g. today: cn^{2}, next year: $\mathrm{c}(2 \mathrm{n})^{2}=$ $4 \mathrm{cn}^{2}: 4 \times$ longer.)

Complexity

Problem size

Complexity

The complexity of an algorithm associates a number $\mathrm{T}(\mathrm{n})$, the worst-case time the algorithm takes, with each problem size n.

Mathematically,
$\mathrm{T}: \mathrm{N}+\rightarrow \mathrm{R}+$
that is T is a function that maps positive integers (giving problem sizes) to positive real numbers (giving number of steps).

10

Complexity

O-notation etc

Given two functions f and $g: N \rightarrow R$
$f(n)$ is $O(g(n))$ iff there is a constant $c>0$ so that
$f(n)$ is eventually always $\leq \mathrm{cg}(\mathrm{n})$
$f(n)$ is $\Omega(g(n))$ iff there is a constant $c>0$ so that $f(n)$ is eventually always $\geq \mathrm{cg}(\mathrm{n})$
$f(n)$ is $\Theta(g(n))$ iff there is are constants $c_{1}, c_{2}>0$ so that eventually always $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$

Asymptotic Bounds for Some Common Functions

Polynomials:
$a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ is $\Theta\left(n^{d}\right)$ if $a_{d}>0$

Logarithms:
$O\left(\log _{a} n\right)=O\left(\log _{b} n\right)$ for any constants $a, b>0$
Logarithms:
For all $\mathrm{x}>0, \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$

Examples

$$
\begin{aligned}
& 10 n^{2}-16 n+100 \text { is } O\left(n^{2}\right) \quad \text { also } O\left(n^{3}\right) \\
& 10 n^{2}-16 n+100 \leq 11 n^{2} \text { for all } n \geq 10 \\
& 10 n^{2}-16 n+100 \text { is } \Omega\left(n^{2}\right) \quad \text { also } \Omega(n) \\
& 10 n^{2}-16 n+100 \geq 9 n^{2} \text { for all } n \geq 16 \\
& \text { Therefore also } 10 n^{2}-16 n+100 \text { is } \Theta\left(n^{2}\right) \\
& 10 n^{2}-16 n+100 \text { is not } O(n) \text { also not } \Omega\left(n^{3}\right)
\end{aligned}
$$

Properties

Transitivity.
If $f=O(g)$ and $g=O(h)$ then $f=O(h)$.
If $f=\Omega(\mathrm{g})$ and $g=\Omega(\mathrm{h})$ then $f=\Omega(\mathrm{h})$.
If $f=\Theta(g)$ and $g=\Theta(h)$ then $f=\Theta(h)$.

Additivity.

If $f=O(h)$ and $g=O(h)$ then $f+g=O(h)$.
If $f=\Omega(\mathrm{h})$ and $\mathrm{g}=\Omega(\mathrm{h})$ then $\mathrm{f}+\mathrm{g}=\Omega(\mathrm{h})$.
If $f=\Theta(h)$ and $g=O(h)$ then $f+g=\Theta(h)$.

"One-Way Equalities"

$2+2$ is 4
$2 n^{2}+5 n$ is $O\left(n^{3}\right)$
$2+2=4$
$2 n^{2}+5 n=O\left(n^{3}\right)$
$4=2+2$

All dogs are mammals
All mammals are dogs
Bottom line:
OK to put big-O in R.H.S. of equality, but not left.
[Better, but uncommon, notation: $\mathrm{T}(\mathrm{n}) \in \mathrm{O}(\mathrm{f}(\mathrm{n}))$.]

Working with $O-\Omega-\Theta$ notation

Claim: For any $\mathrm{a}, \mathrm{b}>\mathrm{I} \quad \log _{\mathrm{a}} \mathrm{n}$ is $\Theta\left(\log _{\mathrm{b}} \mathrm{n}\right)$

$\log _{a} b=x$ means $a^{x}=b$
$a^{\log _{a} b}=b$
$\left(a^{\log _{a} b}\right)^{\log _{b} n}=b^{\log _{b} n}=n$
$\left(\log _{a} b\right)\left(\log _{b} n\right)=\log _{a} n$
$c \log _{b} n=\log _{a} n$ for the constant $\mathrm{c}=\log _{a} b$
So :
$\log _{b} n=\Theta\left(\log _{a} n\right)=\Theta(\log n)$

Working with $O-\Omega-\Theta$ notation

Claim: For any a, and any $b>0,(n+a)^{b}$ is $\Theta\left(n^{b}\right)$

```
\((n+a)^{b} \leq(2 n)^{b} \quad\) for \(n \geq|a|\)
    \(=2^{b} n^{b}\)
    \(=\mathrm{cn}^{\mathrm{b}} \quad\) for \(\mathrm{c}=2^{\mathrm{b}}\)
so \((n+a)^{b}\) is \(O\left(n^{b}\right)\)
    \((\mathrm{n}+\mathrm{a})^{\mathrm{b}} \geq(\mathrm{n} / 2)^{\mathrm{b}} \quad\) for \(\mathrm{n} \geq 2|\mathrm{a}|(\) even if \(\mathrm{a}<0)\)
        \(=2^{-\mathrm{b}} \mathrm{n}^{\mathrm{b}}\)
        \(=c\) 'n \(\quad\) for \(c^{\prime}=2^{-b}\)
    so \((n+a)^{b}\) is \(\Omega\left(n^{b}\right)\)
```

Big-Theta, etc. not always "nice"
$f(n)=\left\{\begin{array}{cc}n^{2}, & n \text { even } \\ n, & n \text { odd }\end{array}\right\}$
$f(n) \neq \Theta\left(n^{2}\right)$ for any a.
Fortunately, such nasty cases are rare

$f(n \log n) \neq \Theta\left(n^{a}\right)$ for any a, either, but at least it's simpler.

A Possible Misunderstanding?

We have looked at

type of complexity analysis worst-, best-, average-case
types of function bounds

Insertion Sort:
$\Omega\left(\mathrm{n}^{2}\right)$ (worst case)
$\mathrm{O}(\mathrm{n})$ (best case)

These two considerations are independent of each other
one can do any type of function bound with any type of complexity analysis - measuring different things with same yardstick

Asymptotic Bounds for Some Common Functions

> Exponentials.
> For all $r>1$
> and all d>0, $\mathrm{n}^{\mathrm{d}}=\mathrm{O}\left(\mathrm{r}^{\mathrm{n}}\right)$.

Polynomial time

Running time is $O\left(n^{d}\right)$ for some constant d independent of the input size n.

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second
In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time

	n	$n \log _{2} n$	n^{2}	n^{3}	$1.5{ }^{n}$	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	<1 sec	$<1 \mathrm{sec}$	4 sec
$n=30$	$<1 \mathrm{sec}$	<1 sec	<1 sec	<1 sec	<1 sec	18 min	10^{25} years
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	<1 sec	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Geek-speak Faux Pas du Jour

"Any comparison-based sorting algorithm requires at least $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ comparisons."

Statement doesn't "type-check."
Use Ω for lower bounds.

Summary

Typical initial goal for algorithm analysis is to find a reasonably tight \qquad i.e., Θ if possible asymptotic
bound on
usually upper bound
worst case running time
as a function of problem size
This is rarely the last word, but often helps separate good algorithms from blatantly poor ones - so you can concentrate on the good ones!

