
This collection of problems is NOT a sample final. It does represent problems that will
be similar in spirit to the “harder” problems on the final. The real final will also have some
problems that are easier, and are a more straightforward application of material from class.

1 Graph Problems

1.1 Interacting Proteins

You work with biologists studying interacting proteins. They give you a graph G, where
nodes are proteins, and there is an edge between two nodes if the proteins interact with each
other. In addition, each protein is labeled with what part of the cell it resides in: Cell Wall
(W), Cytoplasm (C), or Nucleus (N). Eg., given any node a, PartOfCell(a) ∈ {W,C, N}.

The biologists want you to find all proteins that interact with one protein in each part
of the cell. Give an efficient algorithm to do this.

1.2 Kevin Bacon Game

Recall the Kevin Bacon Problem: you are given a graph, with a node for every actor, and an
edge between two nodes if the corresponding actors were in a movie together. Then, if you
are given a specific actor, you are supposed to find a path from that actor to Kevin Bacon in
the graph. After watching “The Untouchables”, your friend says that if it weren’t for Sean
Connery, then there are some people who no longer have any path to Kevin Bacon. Give an
efficient algorithm that will prove whether or not your friend is right.
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2 Greedy Algorithms

2.1 job scheduling

Chapter 4, Problem 7

3 Dynamic Programing

3.1 Knapsack

Given a knapsack with maximum weight W = 17, and the following four items, fill in the
table to compute the optimal items, and state what items should be packed.

item # value weight
1 5 3
2 7 4
3 21 7
4 15 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1
2
3
4

3.2 RNA fold

State what is wrong with this implementation of RNA fold, and state how you would fix it.

procedure Score(start, end)
if end− start ≤ 4 then return 0
else

s← maxstart≤t<end−4(1 + Score(start, t− 1) + Score(t + 1, end− 1))
s← max(s,Score(start, end− 1))

end if
end procedure
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3.3 Independent Set on Paths

Chapter 6, Problem 1

4 NP

4.1 Proving a problem is in NP

For problems 2 - 5 in chapter 8, prove that the given problem is in NP . You do NOT need to
prove that they are NP -complete. (You will not be required to come up with any reductions
on the test.)

4.2 Bad Reductions

Consider the decision problem PATH: Given a graph G, and two nodes s and t in the graph,
is there a path in the graph from s to t.

Here are incorrect proofs that PATH is NP -complete. State what is wrong in these
proofs.

Proof. We will show that PATH is NP -complete by showing 3SAT ≤P PATH.
Given a graph G, and nodes s, t, first check if there is a path from s to t (eg., with BFS).

If there is a path, output the formula:
x1

else, output the formula:
x1 ∧ ¬x1

Thus, if there is a path, we output an instance of 3SAT which is satisfiable, and if there
is not a path, we output an instance of 3SAT which is not satisfiable.

Proof. We will show that PATH is NP -complete by showing 3SAT ≤P PATH.
Given an instance X of the 3SAT problem, solve it. If it satisfiable, output a graph with

2 nodes, s and t, with an edge between s and t. If it is not satisfiable, output a graph with
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2 nodes, s, and t, with no edges. Thus, if there is a solution to X, we output a graph with
a path, and if there is no solution to X, we output a graph without a path.

4.3 Complexity Classes

Chapter 8, problem 1.
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