
CS 417, Winter 08, Final Review

1. Big O, Ω, Θ notation, runtime analysis (Chap 2)

(a) Basic ordering of common functions

(b) Application of definition of O, Ω, Θ.

(c) best-case, worst-case, average case

(d) Given a simple algorithm in pseudo-code, analyze the runtime

2. Graphs (Chap 3)

(a) Graph basics – different ways to store graphs, directed vs undirected, relationships
between nodes & edges

(b) Graph Algorithms. You do not need to memorize the basic algorithms (they will
be provided), but you should be familiar with how to modify them for specific
problems. Be familiar with the following algorithms & applications:

i. BFS

ii. DFS

iii. Topological Sort

iv. Shortest Path

v. Connected Components (algorithm not provided)

3. Greedy Algorithms (Chap 4).

(a) Be familiar with both the algorithms, and their proofs. You will not be asked to
simply regurgitate one of these proofs – but you may be asked to sketch a similar
proof.

i. Interval Scheduling

ii. Interval Partitioning (All Interval Scheduling)

iii. Minimize Lateness

(b) In particular, be familiar with the following proof techniques:

i. Exchange Argument

ii. Stay Ahead Argument

iii. Structural Argument

iv. Finding counter-examples to show how bad greedy strategies can fail.

(c) Understand how to use the following algorithms. You do not need to know their
proofs, but at least have an idea of why they are correct

i. Coin Changing

ii. Prim’s Minimum Spanning Tree

iii. Dijkstra’s Shortest Path

(d) Huffman codes

1



i. Basic idea of a prefix code, how to use it, how to calculate compressed file
length

ii. Be able to apply the Huffman algorithm

iii. Understand the concept of inversions and how we applied them in analyzing
prefix codes.

iv. You do not need to know the full proof of correctness for the Huffman algo-
rithm.

4. Divide And Conquer (Chap 5).

(a) Go from code to recurrence

(b) Solve a recurrence (eg., with Master Theorem)

5. Dynamic Programming (Chap 6).

(a) Show that greedy can fail

(b) Using principle of optimality to make a recurrence

(c) From recurrence to code – iterative version, memoize version

(d) Know why “naive” recursion is bad

(e) Understand some examples

i. Minimum Stamp Problem

ii. Weighted Interval Problem

iii. RNA folding

iv. String Similarity

v. Knapsack

6. NP (Chap 8).

(a) defn of decision problem

(b) Why do we care about class P?

(c) The class NP

i. Understand defintion

ii. How to solve a problem in NP

iii. Be able to show a language is in NP

iv. Know some examples

(d) NP -complete problems

(e) Relationship between P, NP,NP -complete, EXP

2


