Reference Sheet

$\overline{BFS(s)}$

- 2: Mark s discovered
- 3: queue $\leftarrow \{s\}$
- 4: while queue not empty do
- 5: $u \leftarrow removeFront(queue)$
- 6: for all edge (u, x) do
- 7: **if** x is "undiscovered" then
- 8: Mark x "discovered"
- 9: Append x on queue
- 10: end if
- 11: end for
- 12: Mark u "fully explored"

13: end while

$TopologicalOrder(G)$

$\overline{\mathrm{DFS}(v)}$:

```
1: v \, df \, s \# = \text{dfscounter++}2: for all edge (v, x) do
3: if x.dfs\# = -1 then
4: DFS(x)5: else
6: (code for back edges, etc.)
7: end if
8: Mark v "completed"
9: end for
```
Shortest Weighted $Path(G, s, l)$

- 1: Let S be the set of explored nodes
- 2: $S = \{s\}$ and $d(s) = 0$
- 3: while $S \neq V$ do

4: Select a node $v \notin S$ with at least one edge from S for which

$$
d'(v) = min_{e=(u,v):u \in S} d(u) + l_e
$$

is as small as possible.

5: Add v to S and define $d(v) = d'(v)$

6: end while

Min Spanning $Tree(G, l)$ (Prim's Algorithm)

1: Arbitrarily choose some starting node x .

2: Let $V_{new} = \{x\}, E_{tree} = \{\}.$

- 3: while $\textbf{do}V_{new} \neq V$
- 4: Choose edge $e = (u, v)$ with minimal weight such that $u \in V_{new}$ and $v \notin V_{new}$
- 5: Add v to V_{new} and e to E_{tree} .
- 6: end while

$Huffman(C, f)$

- 1: Insert node for each letter into priority queue by freq
- 2: while queue length > 1 do
- 3: Remove smallest 2 nodes, call them x, y
- 4: Make new node z with children x, y .
- 5: $f(z) = f(x) + f(y)$
- 6: Insert z into queue
- 7: end while

O, Ω, Θ

- $f(n)$ is $O(g(n))$ iff there is a constant $c > 0$ so that $f(n)$ is eventually always $\leq c g(n)$
- $f(n)$ is $\Omega(g(n))$ iff there is a constant $c > 0$ so that $f(n)$ is eventually always $\geq c g(n)$
- $f(n)$ is $\Theta(g(n))$ iff there is are constants $c_1, c_2 > 0$ so that eventually always c_1 $g(n) \leq$ $f(n) \leq c_2$ $g(n)$

Greedy Analysis Strategies

- Greedy algorithm *stays ahead*. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- *Structural.* Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

• Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

Master Recurrence

- If $T(n) = aT(n/b) + cn^k$ for $n > b$ then
	- if $a > b^k$ then $T(n)$ is $\Theta(n^{\log_b a})$. $(many subproblems \Rightarrow leaves dominate)$
	- if $a < b^k$ then $T(n)$ is $\Theta(n^k)$ (few subproblems \Rightarrow top level dominates)
	- if $a = b^k$ then $T(n)$ is $\Theta(n^k log n)$ $(balanced \Rightarrow all log n levels contribute)$

Minimum Stamp Recurrence

$$
Opt(i) = min \begin{pmatrix} 0 & i = 0 \\ 1 + Opt(i - 5) & i \ge 5 \\ 1 + Opt(i - 4) & i \ge 4 \\ 1 + Opt(i - 1) & i \ge 1 \end{pmatrix}
$$

Minimum Stamp: Memoized Code

Initialize M to array of "empty" values procedure MEMOIZESTAMP (n) $\mathbf{if} \,\, M[n] = \text{``empty''} \,\, \mathbf{then} \,\, M[n] = min$ $\sqrt{ }$ $\overline{}$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ 0 $i = 0$ $1 + MemoizeStamp(i-5)$ $i \geq 5$ $1 + MemoizeStamp(i-4)$ $i \geq 4$ $1 + MemoizeStamp(i-1) \quad i \geq 1$ \setminus $\Bigg\}$ end if return $M[n]$ end procedure

Minimum Stamp: Iterative Code

for
$$
i = 1
$$
 to *n* **do**
\n
$$
M(i) = min \begin{pmatrix} 0 & i = 0 \\ 1 + M(i - 5) & i \ge 5 \\ 1 + M(i - 4) & i \ge 4 \\ 1 + M(i - 1) & i \ge 1 \end{pmatrix}
$$

end for

RNA folding recurrence

$$
Opt[i,j] = \begin{cases} 0 & \text{if } i \geq j-4 \\ max \begin{cases} Opt[i,j-1] \\ max_t(1+Opt[i,t-1] + Opt[t+1,j-1]) \end{cases} \end{cases}
$$

NP

A decision problem is in NP if and only if there is a polynomial time procedure $verify()$ and an integer k such that

- 1. For every YES problem instance x there is a hint h with $|h| \leq |x|^k$ such that $verify(x, h) =$ Y ES
- 2. For every NO problem instance x there is no hint h with $|h| \leq |x|^k$ such that $verify(x, h) =$ Y ES

NP-hard

A problem B is NP-hard if and only if every problem in NP is polynomial time reducible to B.

NP-complete

A problem B is NP-complete if and only if both:

- 1. B is in NP
- 2. B is NP-hard

Polynomial-Time Reductions

Given two decision problems, A, B, we say that A is polynomial-time reducible to B, $A \leq_{P} B$ if there exists some polynomial-time function f that converts each instance x of problem A into an instance $f(x)$ of problem B such that x is a YES instance of A if and only if $f(x)$ is a YES instance of B.