
page 1

Reference Sheet

BFS(s)

1: Initialize: All vertices marked “undiscovered”
2: Mark s discovered
3: queue← {s}
4: while queue not empty do
5: u← removeFront(queue)
6: for all edge (u, x) do
7: if x is “undiscovered” then
8: Mark x “discovered”
9: Append x on queue

10: end if
11: end for
12: Mark u “fully explored”
13: end while

TopologicalOrder(G)

1: count[w]← (remaining) number of incoming edges to w
2: S ← set of (remaining) nodes with no incoming edges
3: while S not empty do
4: Remove some v from S
5: make v next in topological order
6: for all edges from v to some w do
7: decrement count[w]
8: if count[w] = 0 then
9: add w to S

10: end if
11: end for
12: end while

DFS(v):

1: v.dfs# =dfscounter++
2: for all edge (v, x) do
3: if x.dfs# = −1 then
4: DFS(x)
5: else
6: (code for back edges, etc.)
7: end if
8: Mark v “completed”
9: end for

page 2

Shortest Weighted Path(G, s, l)

1: Let S be the set of explored nodes
2: S = {s} and d(s) = 0
3: while S 6= V do
4: Select a node v 6∈ S with at least one edge from S for which

d′(v) = mine=(u,v):u∈Sd(u) + le

is as small as possible.
5: Add v to S and define d(v) = d′(v)
6: end while

Min Spanning Tree(G, l) (Prim’s Algorithm)

1: Arbitrarily choose some starting node x.
2: Let Vnew = {x}, Etree = {}.
3: while doVnew 6= V
4: Choose edge e = (u, v) with minimal weight such that u ∈ Vnew and v 6∈ Vnew

5: Add v to Vnew and e to Etree.
6: end while

Huffman(C, f)

1: Insert node for each letter into priority queue by freq
2: while queue length > 1 do
3: Remove smallest 2 nodes, call them x, y
4: Make new node z with children x, y.
5: f(z) = f(x) + f(y)
6: Insert z into queue
7: end while

O, Ω, Θ

• f(n) is O(g(n)) iff there is a constant c > 0 so that f(n) is eventually always ≤ c g(n)

• f(n) is Ω(g(n)) iff there is a constant c > 0 so that f(n) is eventually always ≥ c g(n)

• f(n) is Θ(g(n)) iff there is are constants c1, c2 > 0 so that eventually always c1 g(n) ≤
f(n) ≤ c2 g(n)

Greedy Analysis Strategies

• Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its
solution is at least as good as any other algorithm’s.

• Structural. Discover a simple “structural” bound asserting that every possible solution
must have a certain value. Then show that your algorithm always achieves this bound.

page 3

• Exchange argument. Gradually transform any solution to the one found by the greedy
algorithm without hurting its quality.

Master Recurrence

• If T (n) = aT (n/b) + cnk for n > b then

– if a > bk then T (n) is Θ(nlogb a).
(many subproblems ⇒ leaves dominate)

– if a < bk then T (n) is Θ(nk)
(few subproblems ⇒ top level dominates)

– if a = bk then T (n) is Θ(nklogn)
(balanced ⇒ all log n levels contribute)

Minimum Stamp Recurrence

Opt(i) = min

0 i = 0

1 + Opt(i− 5) i ≥ 5

1 + Opt(i− 4) i ≥ 4

1 + Opt(i− 1) i ≥ 1

Minimum Stamp: Memoized Code

Initialize M to array of “empty” values
procedure MemoizeStamp(n)

if M [n] = “empty” then M [n] = min

0 i = 0

1 + MemoizeStamp(i− 5) i ≥ 5

1 + MemoizeStamp(i− 4) i ≥ 4

1 + MemoizeStamp(i− 1) i ≥ 1

end if
return M [n]

end procedure

Minimum Stamp: Iterative Code

for i = 1 to n do

M(i) = min

0 i = 0

1 + M(i− 5) i ≥ 5

1 + M(i− 4) i ≥ 4

1 + M(i− 1) i ≥ 1

end for

page 4

RNA folding recurrence

Opt[i, j] =

0 if i ≥ j − 4

max

{
Opt[i, j − 1]

maxt(1 + Opt[i, t− 1] + Opt[t + 1, j − 1])

NP
A decision problem is in NP if and only if there is a polynomial time procedure verify() and
an integer k such that

1. For every YES problem instance x there is a hint h with |h| ≤ |x|k such that verify(x, h) =
Y ES

2. For every NO problem instance x there is no hint h with |h| ≤ |x|k such that verify(x, h) =
Y ES

NP-hard
A problem B is NP-hard if and only if every problem in NP is polynomial time reducible to
B.

NP-complete
A problem B is NP-complete if and only if both:

1. B is in NP

2. B is NP-hard

Polynomial-Time Reductions
Given two decision problems, A, B, we say that A is polynomial-time reducible to B, A ≤P B
if there exists some polynomial-time function f that converts each instance x of problem A
into an instance f(x) of problem B such that x is a YES instance of A if and only if f(x) is
a YES instance of B.

