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Algorithmic Paradigms

m Greed. Build up a solution incrementally, myopically
optimizing some local criterion.

m Divide-and-conquer. Break up a problem into two
sub-problems, solve each sub-problem independently, and
combine solution to sub-problems to form solution to
original problem.

m Dynamic programming. Break up a problem into a series
of overlapping sub-problems, and build up solutions to
larger and larger sub-problems.



Dynamic Programming Applications

m Areas.

m Bioinformatics.

m Control theory.

m Information theory.

m Operations research.

m Computer science: theory, graphics, Al, systems, ...
m Some famous dynamic programming algorithms.

m Viterbi for hidden Markov models.

m Unix diff for comparing two files.
Smith-Waterman for sequence alignment.
Bellman-Ford for shortest path routing in networks.
Cocke-Kasami-Younger for parsing context free
grammars.



Weighted Interval Scheduling

m Weighted interval scheduling problem.
m Job j starts at s;, finishes at f;, and has weight or value
vj.
m Two jobs compatible if they don't overlap.
m Goal: find maximum weight subset of mutually
compatible jobs.
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Unweighted Interval Scheduling Review

m Recall. Greedy algorithm works if all weights are 1.

m Consider jobs in ascending order of finish time.
m Add job to subset if it is compatible with previously
chosen jobs.

m Can Greedy work when there are weights?



Weighted Interval Scheduling

m Notation. Label jobs by finishing time: f, f, ... f,.

m Def. p(j) = largest index i < j such that job i is
compatible with j.

m Ex: p(8) =5,p(7) =3,p(2) =0.
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Dynamic Programming: Binary Choice

m Notation. OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., |.
m Case 1: OPT selects job j.
B can't use incompatible jobs {p(j) + 1, p(j) +2,...,J — 1}
B must include optimal solution to problem consisting of
remaining compatible jobs 1,2, ..., p(j)
m Case 2: OPT does not select job j.

B must include optimal solution to problem consisting of
remaining compatible jobs 1,2,....,j — 1



Weighted Interval Scheduling: Brute Force

m Brute force algorithm.
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Weighted Interval Scheduling: Brute Force

m Observation. Recursive algorithm fails spectacularly
because of redundant sub-problems exponential
algorithms.

m Ex. Number of recursive calls for family of “layered”
instances grows like Fibonacci sequence.

P =0,p() = j-2
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Weighted Interval Scheduling: Memoization
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Weighted Interval Scheduling: Running Time

m Claim. Memoized version of algorithm takes O(nlog n)
time.

Sort by finish time: O(nlog n).
Computing p() : O(n) after sorting by start time.
M-OPT(j): each invocation takes O(1) time and either

returns an existing value M[j]
fills in one new entry M[j] and makes two recursive calls

Progress Measure: © number of empty cells in M

B © < n always
B max 2 recursive calls at any level =< 2n recursive calls
total

M-Opt(n) is O(n)
Overall, O(nlogn), or O(n) if presorted by start & finish
times
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Weighted Interval Scheduling: lterative

m Bottom Up Iteration
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Knapsack Problem

Given n objects and a knapsack
Object i has weight w; and value v;.
Knapsack has maximum weight W

Goal: fill knapsack to maximize total
value

Example Instance

m Knapsack max weight W = 11.
m Packing items {3, 4} gives total value
40.

m Can we use greedy?

weight
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Knapsack Subproblems: first try

m Def. OPT (i) = max value subset of items 1,... /.
m Case 1: OPT does not select item /.
m OPT selects best of {1,2,...,/—1}
m Case 2: OPT selects item /.
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Knapsack Subproblems: second try

m Def. OPT(i,S) = max value subset of items 1,... 7,
using items in the set S.

m Works, but ...
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Knapsack Subproblems: third time's a charm

m Only need to know the weight already in the knapsack
m Def. OPT (i, w) = max value subset of items 1,...,/
weighing no more than w.
m Case 1: OPT does not select item .
m OPT selects best of {1,2,...,i— 1} weighing no more
than w.
m Case 2: OPT selects item .
BEw=w-—w,
m OPT adds item / to optimal solution from 1,... i —1
weighing no more than w’, the new weight limit.
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String Similarity
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String Edit Distance

m Applications

m Basis for “diff”
m Speech Recognition
m Computational Biology

m Edit Distance

m Gap Penalty J; mismatch-penalty apq
m Cost = sum of gap and mismatch penalties
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Sequence Alignment

m Goal Given two strings X = x;x2 ... x,, and
Y = yviy> ...y, find alignment of minimum cost.

m Def An alignment M is a set of ordered pairs (x;, y;) such
that each item occurs in at most one pair and no
crossings.

m Def The pair (x;,y;) and (xy, y;) cross f i < i but j > j'.
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Sequence Alignment Subproblems

m Def OPT(i,j) = min cost of aligning strings xi Xz ... X;
and y1y>... ;.

m Case 1. OPT matches (x;, yj). Pay mismatch for (x;, y;)
+ min cost aligning substrings x3x2 ... x;_1 and
yiy2...yj—1

m Case 2a. OPT leaves x; unmatched. Pay gap for x; and
min cost of aligning x1x2...x;_1 and y1y>...y;.

m Case 2b. OPT leaves y; unmatched. Pay gap for y; and
min cost of aligning x1x2...x; and y1y>...yj_1.
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Sequence Alignment Runtime

m Runtime: ©(mn)
m Space: ©(mn)
m English words: m,n < 10
m Biology: m, n ~ 10°
m 100 operations OK ...

m 10 GB array is a problem
m Can cut space down to O(m + n) (see Section 6.7)
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Dynamic Programming and TSP(1)

m Consider this Dyanmic Programming “solution” to the
Travelling Salesman Problem

Order the points py, ..., p, arbitrarily.
fori=1,...ndo

forj=1,...ido

Take optimal solution for points py,...p;_1, and put

point p; right after p;.

end for

Keep optimal of all the attempts above.
end for

m The runtime of this algorithm is ©(n?). Is it really this

?
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Dynamic Programming and TSP (2)

m The runtime of this algorithm is ©(n?). Is it really this
easy?
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Dynamic Programming and TSP (3)

m What if we changed the previous algorithm to keep track
of all ordering of points p1, ..., p;? The optimal solution
for p1, ..., pir1 must come from one of those, right?
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