Dynamic Programming Examples

Imran Rashid

University of Washington

February 27, 2008

Lecture Outline

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

4 Common Errors with Dynamic Programming

Algorithmic Paradigms

- Greed. Build up a solution incrementally, myopically optimizing some local criterion.
- Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.
- Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems, ...
- Some famous dynamic programming algorithms.
 - Viterbi for hidden Markov models.
 - Unix diff for comparing two files.
 - Smith-Waterman for sequence alignment.
 - Bellman-Ford for shortest path routing in networks.
 - Cocke-Kasami-Younger for parsing context free grammars.

Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.
- Can Greedy work when there are weights?

Weighted Interval Scheduling

- Notation. Label jobs by finishing time: $f_1, f_2, \ldots f_n$.
- Def. p(j) = largest index i < j such that job i is compatible with j.

• Ex:
$$p(8) = 5, p(7) = 3, p(2) = 0$$

Dynamic Programming: Binary Choice

- Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.
 - Case 1: OPT selects job *j*.
 - can't use incompatible jobs $\{p(j) + 1, p(j) + 2, ..., j 1\}$
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)
 - Case 2: OPT does not select job *j*.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j - 1

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Weighted Interval Scheduling: Brute Force

- Observation. Recursive algorithm fails spectacularly because of redundant sub-problems exponential algorithms.
- Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted Interval Scheduling: Memoization

Weighted Interval Scheduling: Running Time

- Claim. Memoized version of algorithm takes O(n log n) time.
 - Sort by finish time: $O(n \log n)$.
 - Computing p() : O(n) after sorting by start time.
 - M-OPT(j): each invocation takes O(1) time and either
 - 1 returns an existing value M[j]
 - 2 fills in one new entry M[j] and makes two recursive calls
 - Progress Measure: ⊖ number of empty cells in M
 - $\Theta \leq n$ always
 - max 2 recursive calls at any level ⇒≤ 2*n* recursive calls total
 - M-Opt(*n*) is *O*(*n*)
 - Overall, O(n log n), or O(n) if presorted by start & finish times

Weighted Interval Scheduling: Iterative

Bottom Up Iteration

Knapsack Problem

- Given n objects and a knapsack
- Object *i* has weight w_i and value v_i .
- Knapsack has maximum weight W
- Goal: fill knapsack to maximize total value
- Example Instance
 - Knapsack max weight W = 11.
 - Packing items {3,4} gives total value 40.
- Can we use greedy?

item	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Subproblems: first try

• Def. $OPT(i) = \max$ value subset of items $1, \ldots, i$.

- Case 1: OPT does not select item *i*.
 - OPT selects best of $\{1, 2, \ldots, i-1\}$
- Case 2: OPT selects item *i*.

Knapsack Subproblems: second try

- Def. OPT(i, S) = max value subset of items 1,..., i, using items in the set S.
- Works, but ...

Knapsack Subproblems: third time's a charm

- Only need to know the weight already in the knapsack
 Def. OPT(i, w) = max value subset of items 1,..., i weighing no more than w.
 - Case 1: OPT does not select item *i*.
 - OPT selects best of $\{1, 2, \dots, i-1\}$ weighing no more than w.
 - Case 2: OPT selects item *i*.
 - $w' = w w_i$
 - OPT adds item *i* to optimal solution from 1,...,*i* − 1 weighing no more than *w*′, the new weight limit.

String Similarity

5 mismatches, 1 gap

- How similar are two strings?
 - ocurrance
 - 2 occurrence

1 mismatch, 1 gap

0 mismatches, 3 gaps

String Edit Distance

Applications

- Basis for "diff"
- Speech Recognition
- Computational Biology
- Edit Distance
 - Gap Penalty δ ; mismatch-penalty α_{pq}
 - Cost = sum of gap and mismatch penalties

Sequence Alignment

- **Goal** Given two strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ find alignment of minimum cost.
- Def An alignment M is a set of ordered pairs (x_i, y_j) such that each item occurs in at most one pair and no crossings.
- **Def** The pair (x_i, y_j) and $(x_{i'}, y_{j'})$ cross f i < i' but j > j'.

Sequence Alignment Subproblems

- Def OPT(i, j) = min cost of aligning strings x₁x₂...x_i and y₁y₂...y_j.
 - Case 1. OPT matches (x_i, y_j). Pay mismatch for (x_i, y_j)
 + min cost aligning substrings x₁x₂...x_{i-1} and

 $y_1y_2\ldots y_{j-1}$

- Case 2a. OPT leaves x_i unmatched. Pay gap for x_i and min cost of aligning x₁x₂...x_{i-1} and y₁y₂...y_j.
- Case 2b. OPT leaves y_i unmatched. Pay gap for y_i and min cost of aligning x₁x₂...x_i and y₁y₂...y_{j-1}.

Sequence Alignment Runtime

- Runtime: $\Theta(mn)$
- Space: $\Theta(mn)$
- English words: $m, n \leq 10$
- Biology: $m, n \approx 10^5$
 - 10¹0 operations OK ...
 - 10 GB array is a problem
 - Can cut space down to O(m + n) (see Section 6.7)

Dynamic Programming and TSP(1)

 Consider this Dyanmic Programming "solution" to the Travelling Salesman Problem

Order the points p_1, \ldots, p_n arbitrarily. for $i = 1, \ldots n$ do for $j = 1, \ldots i$ do Take optimal solution for points $p_1, \ldots p_{i-1}$, and put point p_i right after p_j . end for Keep optimal of all the attempts above. end for

The runtime of this algorithm is Θ(n²). Is it really this easy?

Dynamic Programming and TSP (2)

The runtime of this algorithm is Θ(n²). Is it really this easy?

Dynamic Programming and TSP (3)

■ What if we changed the previous algorithm to keep track of all ordering of points *p*₁,..., *p_i*? The optimal solution for *p*₁,..., *p_{i+1}* <u>must</u> come from one of those, right?