
Dynamic Programming Examples

Imran Rashid

University of Washington

February 27, 2008

1 / 29



Lecture Outline

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

4 Common Errors with Dynamic Programming

2 / 29



Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically
optimizing some local criterion.

Divide-and-conquer. Break up a problem into two
sub-problems, solve each sub-problem independently, and
combine solution to sub-problems to form solution to
original problem.

Dynamic programming. Break up a problem into a series
of overlapping sub-problems, and build up solutions to
larger and larger sub-problems.

3 / 29



Dynamic Programming Applications

Areas.

Bioinformatics.
Control theory.
Information theory.
Operations research.
Computer science: theory, graphics, AI, systems, ...

Some famous dynamic programming algorithms.

Viterbi for hidden Markov models.
Unix diff for comparing two files.
Smith-Waterman for sequence alignment.
Bellman-Ford for shortest path routing in networks.
Cocke-Kasami-Younger for parsing context free
grammars.

4 / 29



Weighted Interval Scheduling

Weighted interval scheduling problem.
Job j starts at sj , finishes at fj , and has weight or value
vj .
Two jobs compatible if they don’t overlap.
Goal: find maximum weight subset of mutually
compatible jobs.

6 / 29



Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

Consider jobs in ascending order of finish time.
Add job to subset if it is compatible with previously
chosen jobs.

Can Greedy work when there are weights?

Greedy fails for ordering either by finish time or by weight

7 / 29



Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1, f2, . . . fn.
Def. p(j) = largest index i < j such that job i is
compatible with j .
Ex: p(8) = 5, p(7) = 3, p(2) = 0.

i p(i)
0 -
1 0
2 0
3 0
4 1
5 0
6 2
7 3
8 5

8 / 29



Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j.

Case 1: OPT selects job j .

can’t use incompatible jobs {p(j) + 1, p(j) + 2, ..., j − 1}
must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)

Case 2: OPT does not select job j .

must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j − 1

9 / 29



Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input n, s1, . . . sn, f1, . . . fn, v1, . . . , vn

Sort jobs by finish times so f1 ≤ f2 ≤ . . . ≤ fn
Compute p(1), p(2), . . . , p(n)
procedure Compute-Opt(j)

if j = 0 then return 0
else

return max(vj+Compute-Opt(p(j)), Compute-
Opt(j − 1) )

end if
end procedure

10 / 29



Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly
because of redundant sub-problems exponential
algorithms.

Ex. Number of recursive calls for family of “layered”
instances grows like Fibonacci sequence.

11 / 29



Weighted Interval Scheduling: Memoization

Input n, s1, . . . sn, f1, . . . fn, v1, . . . , vn

Sort jobs by finish times so f1 ≤ f2 ≤ . . . ≤ fn
Compute p(1), p(2), . . . , p(n)
for i = 1 . . . n do

M[i ]← empty
end for
M[0]← 0
procedure M-Opt(j)

if M[j ] is empty then
M[j ]← max(vj+M-Opt(p(j)), M-Opt(j − 1) )

end if
return M[j ]

end procedure

12 / 29



Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n)
time.

Sort by finish time: O(n log n).
Computing p() : O(n) after sorting by start time.
M-Opt(j): each invocation takes O(1) time and either

1 returns an existing value M[j ]
2 fills in one new entry M[j ] and makes two recursive calls

Progress Measure: Θ number of empty cells in M

Θ ≤ n always
max 2 recursive calls at any level ⇒≤ 2n recursive calls
total

M-Opt(n) is O(n)
Overall, O(n log n), or O(n) if presorted by start & finish
times

13 / 29



Weighted Interval Scheduling: Iterative

Bottom Up Iteration

Input n, s1, . . . sn, f1, . . . fn, v1, . . . , vn

Sort jobs by finish times so f1 ≤ f2 ≤ . . . ≤ fn
Compute p(1), p(2), . . . , p(n)
procedure Iter-Opt(j)

M[0]← 0
for i = 1 . . . n do

M[i ]← max(vi + M[p(i)], M[i − 1])
end for
return M[j ]

end procedure

14 / 29



Knapsack Problem

Given n objects and a knapsack

Object i has weight wi and value vi .

Knapsack has maximum weight W

Goal: fill knapsack to maximize total
value

Example Instance

Knapsack max weight W = 11.
Packing items {3, 4} gives total value
40.

Can we use greedy?

Greedy by value/weight ratio is
sub-optimal. In the example, it would
pack {5, 2, 1}, which only has value 35.

item value weight
1 1 1
2 6 2
3 18 5
4 22 6
5 28 7

16 / 29



Knapsack Subproblems: first try

Def. OPT (i) = max value subset of items 1, . . . , i .
Case 1: OPT does not select item i .

OPT selects best of {1, 2, . . . , i − 1}
Case 2: OPT selects item i .

accepting item i does not immediately imply that we
will have to reject other items.
without knowing what other items were selected before
i , we don’t even know if we have enough room for i

Conclusion. Need more sub-problems!

17 / 29



Knapsack Subproblems: second try

Def. OPT (i , S) = max value subset of items 1, . . . , i ,
using items in the set S .

Works, but ...

... 2n subproblems! we haven’t saved any work

Do we really need to know all of items chosen? Just need
to know if we can stick in item i ...

18 / 29



Knapsack Subproblems: third time’s a charm

Only need to know the weight already in the knapsack
Def. OPT (i , w) = max value subset of items 1, . . . , i
weighing no more than w .

Case 1: OPT does not select item i .
OPT selects best of {1, 2, . . . , i − 1} weighing no more
than w .

Case 2: OPT selects item i .
w ′ = w − wi

OPT adds item i to optimal solution from 1, . . . , i − 1
weighing no more than w ′, the new weight limit.

The Reccurence:

OPT (i , w) =


0 if i = 0

OPT (i − 1, w) if wi > w

max(vi + OPT (i − 1, w − wi),

OPT (i − 1, w))

19 / 29



String Similarity

How similar are two strings?

1 ocurrance
2 occurrence

21 / 29



String Edit Distance

Applications

Basis for “diff”
Speech Recognition
Computational Biology

Edit Distance

Gap Penalty δ; mismatch-penalty αpq

Cost = sum of gap and mismatch penalties

22 / 29



Sequence Alignment

Goal Given two strings X = x1x2 . . . xm and
Y = y1y2 . . . yn find alignment of minimum cost.

Def An alignment M is a set of ordered pairs (xi , yj) such
that each item occurs in at most one pair and no
crossings.

Def The pair (xi , yj) and (xi ′ , yj ′) cross f i < i ′ but j > j ′.

cost(M) =
∑

(xi ,yj )∈M

αxi ,yj︸ ︷︷ ︸
mismatch

+
∑

i :xi unmatched

δ +
∑

j :yj unmatched

δ︸ ︷︷ ︸
gap

23 / 29



Sequence Alignment Subproblems

Def OPT (i , j) = min cost of aligning strings x1x2 . . . xi

and y1y2 . . . yj .
Case 1. OPT matches (xi , yj). Pay mismatch for (xi , yj)
+ min cost aligning substrings x1x2 . . . xi−1 and
y1y2 . . . yj−1

Case 2a. OPT leaves xi unmatched. Pay gap for xi and
min cost of aligning x1x2 . . . xi−1 and y1y2 . . . yj .
Case 2b. OPT leaves yi unmatched. Pay gap for yi and
min cost of aligning x1x2 . . . xi and y1y2 . . . yj−1.

OPT (i , j) =



jδ if i = 0

iδ if j = 0

min


αxi ,yj

+ OPT (i − 1, j − 1)

δ + OPT (i − 1, j)

δ + OPT (i , j − 1)

otherwise

24 / 29



Sequence Alignment Runtime

Runtime: Θ(mn)

Space: Θ(mn)

English words: m, n ≤ 10

Biology: m, n ≈ 105

1010 operations OK ...
10 GB array is a problem
Can cut space down to O(m + n) (see Section 6.7)

25 / 29



Dynamic Programming and TSP(1)

Consider this Dyanmic Programming “solution” to the
Travelling Salesman Problem

Order the points p1, . . . , pn arbitrarily.
for i = 1, . . . n do

for j = 1, . . . i do
Take optimal solution for points p1, . . . pi−1, and put

point pi right after pj .
end for
Keep optimal of all the attempts above.

end for

The runtime of this algorithm is Θ(n2). Is it really this
easy?

27 / 29



Dynamic Programming and TSP (2)

The runtime of this algorithm is Θ(n2). Is it really this
easy?

NO. We don’t have the “principle of optimality”.

Why should the optimal solution for points p1, . . . , pi be
based on the optimal solution for p1, . . . , pi−1???

We have not bothered to prove the optimality for many of
the problems we considered, because it is “clear”. But be
sure to check.

28 / 29



Dynamic Programming and TSP (3)

What if we changed the previous algorithm to keep track
of all ordering of points p1, . . . , pi? The optimal solution
for p1, . . . , pi+1 must come from one of those, right?

Sure, that would work.

But now you’re doing n! work.

29 / 29


	Weighted Interval Scheduling
	Knapsack Problem
	String Similarity
	Common Errors with Dynamic Programming

