
Dynamic Programming Intro

Imran Rashid

University of Washington

February 15, 2008

Dynamic Programming

Outline:

General Principles
Easy Examples – Fibonacci, Licking Stamps
Meatier examples

RNA Structure prediction
Weighted interval scheduling
Maybe others

Some Algorithm Design Techniques, I

General overall idea

Reduce solving a problem to a smaller problem or
problems of the same type

Greedy algorithms

Used when one needs to build something a piece at a
time
Repeatedly make the greedy choice - the one that looks
the best right away

e.g. closest pair in TSP search

Usually fast if they work (but often don’t)

Some Algorithm Design Techniques, II

Divide & Conquer

Reduce problem to one or more sub-problems of the
same type
Typically, each sub-problem is at most a constant
fraction of the size of the original problem

e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)

Some Algorithm Design Techniques, III

Dynamic Programming

Give a solution of a problem using smaller sub-problems,
e.g. a recursive solution
Useful when the same sub-problems show up again and
again in the solution

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic
programming in the 1950s.

Etymology.

Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical
research.
Bellman sought an impressive name to avoid
confrontation.

”it’s impossible to use dynamic in a pejorative sense”
”something not even a Congressman could object to”

Simple case:Computing Fibonacci Numbers

Recall Fn = Fn−1 + Fn−2 and F0 = 0, F1 = 1

Recursive algorithm:

procedure Fibo(n)
if n = 0 then

return 0
else if n = 1 then

return 1
else

return Fibo(n − 1) + Fibo(n − 2)
end if

end procedure

Recursive Call Tree

Very slow, because of many repeated calculations!

Recursive Call Tree

Very slow, because of many repeated calculations!

Recursive Call Tree

Very slow, because of many repeated calculations!

Memo-ization (Caching)

Remember all values from previous recursive calls

Before recursive call, test to see if value has already been
computed

Dynamic Programming

could be memoized
or, convert recursion to iteration (top-down →
bottom-up)

Fibonacci - Memoized Version

Initialize F [i] undefined for all i
F [0]← 0
F [1]← 1
procedure FiboMem(n)

if F [n] undefined then
F [n]← FiboMem(n − 1) + FiboMem(n − 2)

end if
return F [n]

end procedure

Fibonacci - Dynamic Programming Version

procedure FiboDP(n)
F [0]← 0
F [1]← 1
for i = 2 to n do

F [i]← F [i − 1] + F [i − 2]
end for
return F [n]

end procedure

for this problem, actually only need to keep last two
entries, not full array ... but not a big difference

Dynamic Programming

Useful when

Same recursive sub-problems occur repeatedly
Parameters of these recursive calls anticipated
The solution to whole problem can be solved without
knowing the internal details of how the sub-problems are
solved

“principle of optimality”

Making change

Given:

Large supply of
1¢, 5¢, 10¢, 25¢, 50¢ coins
An amount N

Problem: choose fewest coins
totaling N

Cashier’s (greedy) algorithm works:

Give as many as possible of the
next biggest denomination

Licking Stamps

Given:

Large supply of 5¢, 4¢, and 1¢
stamps
An amount N

Problem: choose fewest stamps
totaling N

How to Lick 27¢

of 5 ¢ # 4 ¢ # 1 ¢ total
stamps stamps stamps stamps

5 0 2 7
4 1 3 8
3 3 0 6

Greed doesn’t pay this time ...

A Simple Algorithm

At most N stamps needed, etc.

for a = 0, . . . , N do
for b = 0, . . . , N do

for c = 0, . . . , N do
if 5a+4b+c == N&&a+b+c is new min then

retain (a,b,c)
end if

end for
end for

end for

Time: O(N3) (Not too hard to see some optimizations,
but we’re after bigger fish. . .)

The Magic Genie

a useful way to think about dynamic
programming (for me ...)

You can ask a magic genie as many
thing as you want ...
... but its power falls just short of your
question. (Eg., it can onlyfigure how
many stamps to use for up to 26¢)
Can you still use the genie to get a
solution?

Better Idea

Theorem: If last stamp in an opt sol has value v , then
previous stamps are opt sol for N − v .

Proof: if not, we could improve the solution for N by
using opt for N − v .

for i = 1 to n do

M(i) = min




0 i = 0

1 + M(i − 5) i ≥ 5

1 + M(i − 4) i ≥ 4

1 + M(i − 1) i ≥ 1


end for

New Idea: Recursion

M(i) = min




0 i = 0

1 + M(i − 5) i ≥ 5

1 + M(i − 4) i ≥ 4

1 + M(i − 1) i ≥ 1



Time: O(3n)

Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”
Bottom up:
for i = 0, . . . , N do ;

Time: O(N)

Finding How Many Stamps

M[8] = 1 + min(M[7], M[4], M[3])

= 1 + min(3, 1, 3)

M[8] = 2

Finding How Many Stamps

M[8] = 1 + min(M[7], M[4], M[3])

= 1 + min(3, 1, 3)

M[8] = 2

Finding Which Stamps: Trace-Back

Finding Which Stamps: Trace-Back

Trace-Back

Way 1: tabulate all
add data structure storing back-pointers

Way 2: re-compute just what’s needed

procedure Traceback(i)
if i = 0 then return
end if
for d ∈ {1, 4, 5} do

if M[i] == 1 + M[i − d] then break
end if

end for
print d
Traceback(i − d)

end procedure

Complexity Note

O(N) is better than O(N3) or O(3N/5)

But still exponential in input size (log N bits)
(E.g., miserable if N is 64 bits – c264 steps & 264

memory.)

Elements of Dynamic Programming

What feature did we use?

What should we look for to use again?

Optimal Substructure
Optimal solution contains optimal subproblems

A non-example: min (number of stamps mod 2)

Repeated Subproblems The same subproblems arise in
various ways

