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Dynamic Programming

m Outline:

m General Principles
m Easy Examples — Fibonacci, Licking Stamps
m Meatier examples

m RNA Structure prediction

m Weighted interval scheduling

m Maybe others



Some Algorithm Design Techniques, |

m General overall idea
m Reduce solving a problem to a smaller problem or
problems of the same type
m Greedy algorithms
m Used when one needs to build something a piece at a
time
m Repeatedly make the greedy choice - the one that looks
the best right away
m e.g. closest pair in TSP search

m Usually fast if they work (but often don't)



Some Algorithm Design Techniques, ||

m Divide & Conquer

m Reduce problem to one or more sub-problems of the
same type

m Typically, each sub-problem is at most a constant
fraction of the size of the original problem

m e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)



Some Algorithm Design Techniques, |lI

m Dynamic Programming
m Give a solution of a problem using smaller sub-problems,
e.g. a recursive solution
m Useful when the same sub-problems show up again and
again in the solution



Dynamic Programming History

m Bellman. Pioneered the systematic study of dynamic
programming in the 1950s.
m Etymology.
m Dynamic programming = planning over time.
m Secretary of Defense was hostile to mathematical
research.

m Bellman sought an impressive name to avoid
confrontation.

m "it's impossible to use dynamic in a pejorative sense”
B "something not even a Congressman could object to”



Simple case:Computing Fibonacci Numbers

m Recall F, =F,_1+F,>and F[p =0,F =1
m Recursive algorithm:

procedure F1B0(n)
if n =0 then
return 0
else if n =1 then
return 1
else
return Fibo(n — 1) + Fibo(n — 2)
end if
end procedure




Recursive Call Tree
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Recursive Call Tree
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Recursive Call Tree
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m Very slow, because of many repeated calculations!



Memo-ization (Caching)

m Remember all values from previous recursive calls

m Before recursive call, test to see if value has already been
computed

m Dynamic Programming

m could be memoized
m or, convert recursion to iteration (top-down —
bottom-up)



Fibonacci - Memoized Version

Initialize F[i] undefined for all i
F[0] <0
F[1] «— 1
procedure FIBOMEM(n)
if F[n] undefined then
F[n] < FiboMem(n — 1) + FiboMem(n — 2)
end if
return F[n]
end procedure




Fibonacci - Dynamic Programming Version

procedure F1BODP(n)
F[0] — 0
F[1] «— 1
for i =2 to ndo
Flil <« F[i = 1] + F[i — 2]
end for
return F[n]
end procedure

m for this problem, actually only need to keep last two
entries, not full array ... but not a big difference



Dynamic Programming

m Useful when

m Same recursive sub-problems occur repeatedly

m Parameters of these recursive calls anticipated

m The solution to whole problem can be solved without
knowing the internal details of how the sub-problems are
solved

m “principle of optimality"”



Making change

m Given:
m Large supply of
1¢,5¢,10¢, 25¢, 50¢ coins
m An amount N
m Problem: choose fewest coins
totaling N

m Cashier's (greedy) algorithm works:

m Give as many as possible of the
next biggest denomination



Licking Stamps

m Given:
m Large supply of 5¢,4¢, and 1¢
stamps
m An amount N
m Problem: choose fewest stamps
totaling N
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How to Lick 27¢

H#ofbec| #4¢ | #1c¢ | total #
stamps | stamps | stamps || stamps
5 0 2 7
4 1 3 8
3 3 0 6

m Greed doesn’t pay this time ...




A Simple Algorithm

m At most N stamps needed, etc.

fora=0,...,Ndo
for b=0,...,N do
forc=0,...,N do
if 5a+4b+c == N&&a+ b+ c is new min then
retain (a,b,c)
end if
end for
end for
end for

m Time: O(N?) (Not too hard to see some optimizations,
but we're after bigger fish. . .)



The Magic Genie

m a useful way to think about dynamic
programming (for me ...)

m You can ask a magic genie as many
thing as you want ...

m ... but its power falls just short of your
question. (Eg., it can onlyfigure how
many stamps to use for up to 26¢)

m Can you still use the genie to get a
solution?




Better Idea

m Theorem: If last stamp in an opt sol has value v, then
previous stamps are opt sol for N — v.

m Proof: if not, we could improve the solution for N by
using opt for N — v.

fori=1to ndo

1+ M(i—5) i>5
1+M(i—4) i>4
1+M(i—1) i>1

M(i) = min

end for




New Idea: Recursion

0 i=0
1+ M(i—5) i>
M(i) = min i (I 5) iz5
1+M(Gi—4) i>4
1+M(Gi—1) i>1
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Time: O(3")



Another New |dea: Avoid Recomputation

m Tabulate values of solved subproblems

m Top-down: “memoization”
m Bottom up:
fori=0,...,Ndo;

m Time: O(N)



Finding How Many Stamps
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Finding How Many Stamps
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M[8] = 1 + min(M[7], M[4], M[3])
=1+ min(3,1,3)
MI[8] =2



Finding Which Stamps: Trace-Back
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Finding Which Stamps: Trace-Back
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Trace-Back

m Way 1: tabulate all
m add data structure storing back-pointers
m Way 2: re-compute just what's needed

procedure TRACEBACK(/)
if i =0 then return
end if
for d € {1,4,5} do
if M[i] ==1+ M[i — d] then break
end if
end for
print d
Traceback(i — d)
end procedure




Complexity Note

m O(N) is better than O(N3) or O(3V/%)

m But still exponential in input size (log N bits)
(E.g., miserable if N is 64 bits — c2%* steps & 2%

memory.)



Elements of Dynamic Programming

m What feature did we use?
m What should we look for to use again?

m Optimal Substructure
Optimal solution contains optimal subproblems
m A non-example: min (number of stamps mod 2)
m Repeated Subproblems The same subproblems arise in
various ways



