Divide And Conquer

Imran Rashid

University of Washington

February 14, 2008

Lecture Outline

1 [Basic Idea](#page-5-0)

- 2 [Mergesort Review](#page-7-0) ■ [Why does it work?](#page-12-0)
- 3 [More Real Applications](#page-16-0) ■ [Closest Pair of Points](#page-17-0) **n** [Integer Multiplication](#page-33-0)

Algorithm Design Techniques

Divide & Conquer

- Reduce problem to one or more sub-problems of the same type
- Typically, each sub-problem is at most a constant fraction of the size of the original problem
	- e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Mergesort — The Recurrence

Mergesort: (recursively) sort 2 half-lists, then merge results.

Merge Sort — Algorithm

Going From Code to Recurrence

■ Carefully define what you're counting, and write it down!

- \blacksquare "Let $C(n)$ be the number of comparisons between sort keys used by MergeSort when sorting a list of length n 1"
- \sim In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted . ■ Write Recurrence(s)

The Recurrence

$$
T(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2T(n/2) + (n-1) & \text{if } n > 1 \end{cases}
$$

Total time: proportional to $T(n)$ (loops, copying data, parameter passing, etc.)

Why Balanced Subdivision?

Alternative "divide & conquer" algorithm:

- 1 Sort n-1
- 2 Sort last 1
- 3 Merge them

Another D&C Approach

- Suppose we've already invented DumbSort, taking time n^2
- Try Just One Level of divide & conquer:
	- DumbSort(first $n/2$ elements)
	- DumbSort(last n/2 elements) $\mathcal{L}_{\mathcal{A}}$
	- **Merge results**

Another D&C Approach, cont.

- **Moral 1: "two halves are better than a whole"**
	- Two problems of half size are better than one full-size problem, even given the $O(n)$ overhead of recombining, since the base algorithm has super-linear complexity.
- Moral 2: "If a little's good, then more's better"
	- two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").

Another D&C Approach, cont.

Moral 3: unbalanced division not as good: $(.1n)^{2} + (.9n)^{2} + n = .82n^{2} + n$

$$
(1)^2 + (n-1)^2 + n = n^2 - 2n + 2 + n
$$

Closest Pair of Points

- Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.
- **Fundamental geometric primitive.**
	- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
	- Special case of nearest neighbor, Euclidean MST, Voronoi.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: Correct Algorithm

Algorithm.

1 Divide: draw vertical line L so that roughly $n/2$ points on each side.

Closest Pair of Points: Combining Efficiently

Find closest pair with one point in each side, assuming that distance $\langle \delta = min(\text{left half}, \text{right half}).$

Closest Pair of Points: δ-strip

 \blacksquare Def. Let s_i be the point in the 2 δ -strip, with the ith smallest y-coordinate.

Closest Pair Algorithm

if *n* ≤ 1 return ∞

Sort points by x coordinate

Choose line L to divide points in half by x coordinate. $\delta = min(ClosestPair(left), ClosestPair(right))$

Delete all points further than δ from L.

Sort remaining points by y coordinate, say $p[1]$ to $p[m]$ for $i = 1$ to m do

$$
k \leftarrow 1
$$
\nwhile

\n
$$
(i + k \leq m) \& k \quad (p[i + k].y < p[i].y + \delta)
$$
\n
$$
\delta \leftarrow \min(\delta, \text{dist}(p[i], p[i + k]))
$$
\n
$$
k \leftarrow k + 1
$$
\nend while

\nend for

Going From Code to Recurrence

- Carefully define what you're counting, and write it down!
	- \blacksquare "Let $C(n)$ be the number of distance calculations made while finding the closest pair of n points"
- In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted .
- ■ Write Recurrence(s)

Closest Pair of Points: Analysis, distance calcs

Closest Pair of Points: Analysis, comparisons

 \blacksquare More comparisons needed, b/c of sort ...

Integer Arithmetic

- Add. Given two n-digit integers a and b, compute $a + b$. $O(n)$ bit operations.
- **Multiply.** Given two n-digit integers a and b, compute $a \times b$
	- Brute force solution: $\Theta(n^2)$ bit operations.

Divide-and-Conquer Multiplication: Warmup

 \blacksquare To multiply two *n*-digit integers:

- Multiply four $\frac{n}{2}$ -digit integers.
- Add $\frac{n}{2}$ -digit integers, and shift to obtain result.

Key trick: 2 multiplies for the price of 1:

Karatsuba Multiplication

■ To multiply two n-digit integers:

- Add two $\frac{n}{2}$ -digit integers.
- Multiply three $\frac{n}{2}$ -digit integers.
- Add, subtract, and shift $\frac{n}{2}$ -digit integers to obtain result.

$$
A = x_1y_1
$$

\n
$$
B = (x_1 + x_0)(y_1 + y_0)
$$

\n
$$
C = x_0y_0
$$

\n
$$
xy = 2^nA + 2^{n/2}(B - A - C) + C
$$

■ Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O(n^{1.585})$ bit operations.

$$
T(n) = 3T(n/2) + cn \Rightarrow T(n) = O(n^{1.585})
$$

Multiplication – The Bottom Line

- Naive: $\Theta(n^2)$
- Karatsuba: $\Theta(n^{1.59...})$
- Amusing exercise: generalize Karatsuba to do 5 size $n/3$ subproblems $\Rightarrow \Theta(n^{1.46...})$
- Best known: $\Theta(n \log n \log \log n)$
	- "Fast Fourier Transform"
	- **p** but mostly unused in practice (unless you need really big numbers - a billion digits of π , say)
- \blacksquare High precision arithmetic IS important for crypto

- Where they come from, how to find them (above)
- Next: how to solve them

Mergesort (review)

- **Mergesort:** (recursively) sort 2 half-lists, then merge results.
- $T(n) = 2T(n/2) + cn, n > 2$
- $T(1) = 0$
- Solution: $O(n \log n)$

The Recurrence

- Total time: proportional to $C(n)$
- (loops, copying data, parameter passing, etc.)

Solve: $T(1) = c$, $T(n) = 2T(n/2) + cn$

Solve: $T(1) = c$, $T(n) = 4T(n/2) + cn$

Solve: $T(1) = c$, $T(n) = 3T(n/2) + cn$

Solve: $T(1) = c$, $T(n) = 3T(n/2) + cn$ (cont.)

Master Divide and Conquer Recurrence

If $\mathcal{T}(n) = \mathsf{aT}(n/b) + \mathsf{c} n^k$ for $n > b$ then if $a > b^k$ then $T(n)$ is $\Theta(n^{\log_b a})$. (many subproblems \Rightarrow leaves dominate) if $a < b^k$ then i $\mathcal{T}(n)$ is $\Theta(n^k)$ (few subproblems \Rightarrow top level dominates) if $a = b^k$ then $T(n)$ is $\Theta(n^k \log n)$ (balanced \Rightarrow all log *n* levels contribute) **True even if it is** $\lceil n/b \rceil$ instead of n/b .

Divide And Conquer Summary

- If base algorithm is super-linear, dividing into pieces can help. "Two halves better than a whole."
- Very carefully analyze the recurrence. Some constants matter, be careful not to miss anything.
- Solve recurrence with recursion tree or Master Recurrence

More applications

More applications of divide & Conquer in the book:

- **Polynomial Multiplication**
- **Fast Fourier Transform**
	- very useful in signal processing