Divide And Conquer

Imran Rashid

University of Washington

February 14, 2008

Lecture Outline

Basic Idea

Mergesort Review
m Why does it work?

More Real Applications
m Closest Pair of Points

m Integer Multiplication

Solving Recurrences

Algorithm Design Techniques

m Divide & Conquer

m Reduce problem to one or more sub-problems of the
same type

m Typically, each sub-problem is at most a constant
fraction of the size of the original problem

m e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)

Mergesort — The Recurrence

m Mergesort: (recursively) sort 2 half-lists,
then merge results.

Log n levels

O(n)
work
per

level

Merge Sort — Algorithm

Going From Code to Recurrence

m Carefully define what you're counting, and write it down!
m “Let C(n) be the number of comparisons between sort
keys used by MergeSort when sorting a list of length n 1”
m In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being counted .

m Write Recurrence(s)

The Recurrence

0 ifn=1
Tin) = {2T(n/2) Y1) ifn>1

m Total time: proportional to T(n) (loops, copying data,
parameter passing, etc.)

Why Balanced Subdivision?

m Alternative "divide & conquer” algorithm:
Sort n-1
Sort last 1
Merge them

Another D& C Approach

m Suppose we've already invented DumbSort, taking time n?
m Try Just One Level of divide & conquer:

m DumbSort(first n/2 elements)
m DumbSort(last n/2 elements)
m Merge results

Another D& C Approach, cont.

m Moral 1: "“two halves are better than a whole”
m Two problems of half size are better than one full-size
problem, even given the O(n) overhead of recombining,
since the base algorithm has super-linear complexity.

m Moral 2: “If a little's good, then more's better”
m two levels of D&C would be almost 4 times faster, 3
levels almost 8, etc., even though overhead is growing.
Best is usually full recursion down to some small
constant size (balancing "work” vs "overhead").

Another D& C Approach, cont.

m Moral 3: unbalanced division not as good:
m (.1n)2+(.9n)2 +n=.82n%>+n

m (1)2+(n—1)2+n=n*>-2n+2+n

Closest Pair of Points

m Closest pair. Given n points in the plane, find a pair with
smallest Euclidean distance between them.

m Fundamental geometric primitive.
m Graphics, computer vision, geographic information
systems, molecular modeling, air traffic control.
m Special case of nearest neighbor, Euclidean MST,
Voronoi.

Closest Pair of Points: First Attempt

m Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: Correct Algorithm

m Algorithm.

Divide: draw vertical line L so that roughly n/2 points
on each side.

Closest Pair of Points: Combining Efficiently

m Find closest pair with one point in each side, assuming
that distance < § = min(left half, right half).

Closest Pair of Points: d-strip

m Def. Let s; be the point in the 2)-strip, with
the ith smallest y-coordinate.

e
(1)
® (0}
©
7]
(=)

N ol
=4

Y

Closest Pair Algorithm

if n <1 return co
Sort points by x coordinate
Choose line L to divide points in half by x coordinate.
d = min(ClosestPair(left), ClosestPair(right))
Delete all points further than § from L.
Sort remaining points by y coordinate, say p[1] to p[m]
for i=1to mdo
k1
while (i + k < m) && (p[i + k].y < pli].y + ¢) do
d < min(0, dist(p[i], p[i + k]))
k—k+1
end while
end for

Going From Code to Recurrence

m Carefully define what you're counting, and write it down!
m “Let C(n) be the number of distance calculations made
while finding the closest pair of n points”
m In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being
counted .

m Write Recurrence(s)

Closest Pair of Points: Analysis, distance calcs

Closest Pair of Points: Analysis, comparisons

m More comparisons needed, b/c of sort ...

Integer Arithmetic

m Add. Given two n-digit integers a and b, compute a + b.
m O(n) bit operations.
m Multiply. Given two n-digit integers a and b, compute
a x b.
m Brute force solution: ©(n?) bit operations.

Divide-and-Conquer Multiplication: Warmup

m To multiply two n-digit integers:
m Multiply four 7-digit integers.
m Add 7-digit integers, and shift to obtain result.

Key trick: 2 multiplies for the price of 1:

Karatsuba Multiplication

m To multiply two n-digit integers:
m Add two 3-digit integers.
m Multiply three 3-digit integers.
m Add, subtract, and shift g—digit integers to obtain result.

A=xiy
B = (x1+ x0)(y1 + y0)
C = xoy0

xy =2"A+2"2(B—A—-C)+C

m Theorem. [Karatsuba-Ofman, 1962] Can multiply two
n-digit integers in O(n'-°®®) bit operations.

T(n) =3T(n/2) 4+ cn = T(n) = O(n**®)

Multiplication — The Bottom Line

Naive: @(n2)
Karatsuba: ©(n'-5%)

Amusing exercise: generalize Karatsuba to do 5 size n/3
subproblems = @(n1.46.,,)

m Best known: ©(nlog nloglog n)

m "Fast Fourier Transform”
m but mostly unused in practice (unless you need really big
numbers - a billion digits of 7, say)

High precision arithmetic IS important for crypto

Recurrences

m Where they come from, how to find them (above)

m Next: how to solve them

Mergesort (review)

m Mergesort: (recursively) sort 2 half-lists, then merge

results.
m T(n)=2T(n/2)+cn, n>2
m 7(1)=0

m Solution: O(nlog n)

The Recurrence

m Total time: proportional to C(n)

[(Ioops, copying data, parameter passing, etc.)

Solve:T(1) = ¢, T(n) =2T(n/2) + cn

m Count work at each level

level num size work
0 1=20 n cn
1 |2=2! n/2 2¢cn/2
2 | 4=22 n/4 4cn/4
i 2f n/2 2cn/2!
k—1| 2k=1 | pjok=t | ok=lcp k=1
k 2k n/2k =1 2KT(1)

Solve:T(1) = ¢, T(n) =4T(n/2) + cn

m Count work at each level

level num size work
0 1=40 n cn
1 4 =4t n/2 4cn /2
2 16 = 42 n/4 4cen/4
i 4 n/2f 4icn/2
k—1| 4kt | pjok-t | gk-lcp okt
k 4k n/2k =11 4%T(1)

Solve:T(1) = ¢, T(n) =3T(n/2) + cn

m Count work at each level
level | num size work
0 [1=23° n cn
1 |3=31 n/2 3cn/2
2 19=3 n/4 9cn/4

i 3 n/2" | 3icn/2f

k | 3% | n/2k=1|3T(1)
m Total Work: T(n) =% 3cn/2f

Solve:T(1) = ¢, T(n) =3T(n/2) + cn (cont.)

Master Divide and Conquer Recurrence

m If T(n) =aT(n/b) + cn* for n > b then
m if 2 > b¥ then T(n) is O(n'°8s2).
(many subproblems = leaves dominate)
m if a < bX then iT(n) is ©(n)
(few subproblems = top level dominates)
m if a = b¥ then T(n) is ©(n*logn)
(balanced = all log n levels contribute)

m True even if it is [n/b] instead of n/b.

Divide And Conquer Summary

m If base algorithm is super-linear, dividing into pieces can
help. " Two halves better than a whole.”

m Very carefully analyze the recurrence. Some constants
matter, be careful not to miss anything.

m Solve recurrence with recursion tree or Master Recurrence

More applications

More applications of divide & Conquer in the book:
m Polynomial Multiplication
m Fast Fourier Transform

m very useful in signal processing

	Basic Idea
	Mergesort Review
	Why does it work?

	More Real Applications
	Closest Pair of Points
	Integer Multiplication

	Solving Recurrences

