Divide And Conquer

Imran Rashid

University of Washington

February 14, 2008

Lecture Outline

- 1 Basic Idea
- 2 Mergesort Review
 - Why does it work?
- 3 More Real Applications
 - Closest Pair of Points
 - Integer Multiplication
- 4 Solving Recurrences

Algorithm Design Techniques

- Divide & Conquer
 - Reduce problem to one or more sub-problems of the same type
 - Typically, each sub-problem is at most a constant fraction of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Mergesort — The Recurrence

Mergesort: (recursively) sort 2 half-lists, then merge results.

Merge Sort — Algorithm

Going From Code to Recurrence

- Carefully define what you're counting, and write it down!
 - "Let C(n) be the number of comparisons between sort keys used by MergeSort when sorting a list of length n 1"
- In code, clearly separate <u>base case</u> from <u>recursive case</u>, highlight <u>recursive calls</u>, and <u>operations being counted</u>.
- Write Recurrence(s)

The Recurrence

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + (n-1) & \text{if } n > 1 \end{cases}$$

■ Total time: proportional to T(n) (loops, copying data, parameter passing, etc.)

Why Balanced Subdivision?

- Alternative "divide & conquer" algorithm:
 - Sort n-1
 - 2 Sort last 1
 - 3 Merge them

Another D&C Approach

- Suppose we've already invented DumbSort, taking time n^2
- Try <u>Just One Level</u> of divide & conquer:
 - DumbSort(first *n*/2 elements)
 - DumbSort(last n/2 elements)
 - Merge results

Another D&C Approach, cont.

- Moral 1: "two halves are better than a whole"
 - Two problems of half size are <u>better</u> than one full-size problem, even given the O(n) overhead of recombining, since the base algorithm has super-linear complexity.
- Moral 2: "If a little's good, then more's better"
 - two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").

Another D&C Approach, cont.

- Moral 3: unbalanced division not as good:
 - $(.1n)^2 + (.9n)^2 + n = .82n^2 + n$

$$(1)^2 + (n-1)^2 + n = n^2 - 2n + 2 + n$$

Closest Pair of Points

- Closest pair. Given *n* points in the plane, find a pair with smallest Euclidean distance between them.
- Fundamental geometric primitive.
 - Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
 - Special case of nearest neighbor, Euclidean MST, Voronoi.

Closest Pair of Points: First Attempt

■ Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: Correct Algorithm

- Algorithm.
 - **1** Divide: draw vertical line L so that roughly n/2 points on each side.

Closest Pair of Points: Combining Efficiently

■ Find closest pair with one point in each side, assuming that distance $< \delta = min(\text{left half, right half})$.

Closest Pair of Points: δ -strip

■ Def. Let s_i be the point in the 2δ -strip, with the ith smallest y-coordinate.

Closest Pair Algorithm

```
if n < 1 return \infty
Sort points by x coordinate
Choose line L to divide points in half by x coordinate.
\delta = min(ClosestPair(left), ClosestPair(right))
Delete all points further than \delta from L.
Sort remaining points by y coordinate, say p[1] to p[m]
for i = 1 to m do
    k \leftarrow 1
    while (i + k \le m) \&\& (p[i + k].y < p[i].y + \delta) do
        \delta \leftarrow \min(\delta, \operatorname{dist}(p[i], p[i+k]))
        k \leftarrow k + 1
    end while
end for
```

Going From Code to Recurrence

- Carefully define what you're counting, and write it down!
 - "Let C(n) be the number of distance calculations made while finding the closest pair of n points"
- In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.
- Write Recurrence(s)

Closest Pair of Points: Analysis, distance calcs

Closest Pair of Points: Analysis, comparisons

■ More comparisons needed, b/c of sort ...

Integer Arithmetic

- Add. Given two n-digit integers a and b, compute a + b.
 - O(n) bit operations.
- Multiply. Given two n-digit integers a and b, compute $a \times b$.
 - Brute force solution: $\Theta(n^2)$ bit operations.

Divide-and-Conquer Multiplication: Warmup

- To multiply two *n*-digit integers:
 - Multiply four $\frac{n}{2}$ -digit integers.
 - Add $\frac{n}{2}$ -digit integers, and shift to obtain result.

Key trick: 2 multiplies for the price of 1:

Karatsuba Multiplication

- To multiply two n-digit integers:
 - Add two $\frac{n}{2}$ -digit integers.
 - Multiply three $\frac{n}{2}$ -digit integers.
 - Add, subtract, and shift $\frac{n}{2}$ -digit integers to obtain result.

$$A = x_1 y_1$$

$$B = (x_1 + x_0)(y_1 + y_0)$$

$$C = x_0 y_0$$

$$xy = 2^n A + 2^{n/2} (B - A - C) + C$$

■ Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O(n^{1.585})$ bit operations.

$$T(n) = 3T(n/2) + cn \Rightarrow T(n) = O(n^{1.585})$$

Multiplication – The Bottom Line

- Naive: $\Theta(n^2)$
- Karatsuba: $\Theta(n^{1.59...})$
- Amusing exercise: generalize Karatsuba to do 5 size n/3 subproblems $\Rightarrow \Theta(n^{1.46...})$
- Best known: $\Theta(n \log n \log \log n)$
 - "Fast Fourier Transform"
 - but mostly unused in practice (unless you need really big numbers a billion digits of π , say)
- High precision arithmetic IS important for crypto

Recurrences

- Where they come from, how to find them (above)
- Next: how to solve them

Mergesort (review)

- Mergesort: (recursively) sort 2 half-lists, then merge results.
- $T(n) = 2T(n/2) + cn, n \ge 2$
- T(1) = 0
- Solution: $O(n \log n)$

The Recurrence

- Total time: proportional to C(n)
- (loops, copying data, parameter passing, etc.)

Solve: T(1) = c, T(n) = 2T(n/2) + cn

Count work at each level level size work num $1 = 2^0$ n cn

Solve: T(1) = c, T(n) = 4T(n/2) + cn

■ Count work at each level

level	num	size	work
0	$1 = 4^0$	n	cn
1	$4 = 4^1$	<i>n</i> /2	4 <i>cn/</i> 2
2	$16 = 4^2$	n/4	4 <i>cn/</i> 4
÷	<u>:</u>	÷	:
i	4 ⁱ	$n/2^i$	$4^i cn/2^i$
÷	:	:	:
k-1	4^{k-1} 4^k	$n/2^{k-1}$	$4^{k-1}cn/2^{k-1}$
k	4 ^k	$n/2^{k-1}$ $n/2^k = 1$	$4^k T(1)$

Solve: T(1) = c, T(n) = 3T(n/2) + cn

■ Count work at each level level num size work

level	num	size	work
0	$1 = 3^0$	n	cn
1	$3 = 3^1$	n/2	3 <i>cn</i> /2
2	$9 = 3^2$	n/4	9 <i>cn</i> /4
÷	:	:	:
i	3 ⁱ	$n/2^i$	3 ⁱ cn/2 ⁱ
:	:	:	:
k	3 ^k	$n/2^k=1$	$3^{k}T(1)$

■ Total Work: $T(n) = \sum_{i=0}^{k} 3^i cn/2^i$

Solve: T(1) = c, T(n) = 3T(n/2) + cn (cont.)

Master Divide and Conquer Recurrence

- If $T(n) = aT(n/b) + cn^k$ for n > b then
 - if $a > b^k$ then T(n) is $\Theta(n^{\log_b a})$. (many subproblems \Rightarrow leaves dominate)
 - if $a < b^k$ then iT(n) is $\Theta(n^k)$ (few subproblems \Rightarrow top level dominates)
 - if $a = b^k$ then T(n) is $\Theta(n^k \log n)$ (balanced \Rightarrow all log n levels contribute)
- True even if it is $\lceil n/b \rceil$ instead of n/b.

Divide And Conquer Summary

- If base algorithm is super-linear, dividing into pieces can help. "Two halves better than a whole."
- Very carefully analyze the recurrence. Some constants matter, be careful not to miss anything.
- Solve recurrence with recursion tree or Master Recurrence

More applications

More applications of divide & Conquer in the book:

- Polynomial Multiplication
- Fast Fourier Transform
 - very useful in signal processing