
Divide And Conquer

Imran Rashid

University of Washington

February 14, 2008

Lecture Outline

1 Basic Idea

2 Mergesort Review
Why does it work?

3 More Real Applications
Closest Pair of Points
Integer Multiplication

4 Solving Recurrences

Algorithm Design Techniques

Divide & Conquer

Reduce problem to one or more sub-problems of the
same type
Typically, each sub-problem is at most a constant
fraction of the size of the original problem

e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)

Mergesort — The Recurrence

Mergesort: (recursively) sort 2 half-lists,
then merge results.

T (n) = 2T (n/2) + cn, n > 2

T (1) = 0

Solution: T (n) = O(n log n) (details
later)

Merge Sort — Algorithm

Algorithm 1 MergeSort(A[1...n])

if n = 1 return A
L = MergeSort(A[1...n/2])
U = MergeSort(A[n/2 + 1...n])
return Merge(U , L)

Algorithm 2 Merge(L[1...n], U[1...n])

C , new array [1...2n]
a = 1, b = 1
for i = 1 to 2n do

C [i] = smaller of L[a], U[b], and correspondingly a++ or
b++
end for
return C

Going From Code to Recurrence

Carefully define what you’re counting, and write it down!

“Let C(n) be the number of comparisons between sort
keys used by MergeSort when sorting a list of length n 1”

In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being counted .

Write Recurrence(s)

The Recurrence

T (n) =

{
0 if n = 1

2T (n/2) + (n − 1) if n > 1

Total time: proportional to T(n) (loops, copying data,
parameter passing, etc.)

Why Balanced Subdivision?

Alternative ”divide & conquer” algorithm:

1 Sort n-1
2 Sort last 1
3 Merge them

T (n) = T (n − 1) + T (1) + 2n for n ≥ 2

T (1) = 0

Solution: T (n) = 2n + 2(n − 1) + 2(n − 2) . . . = Θ(n2)

Another D&C Approach

Suppose we’ve already invented DumbSort, taking time n2

Try Just One Level of divide & conquer:

DumbSort(first n/2 elements)
DumbSort(last n/2 elements)
Merge results

Time:2(n/2)2 + n = n2/2 + n < n2

Almost twice as fast!

Another D&C Approach, cont.

Moral 1: “two halves are better than a whole”

Two problems of half size are better than one full-size
problem, even given the O(n) overhead of recombining,
since the base algorithm has super-linear complexity.

Moral 2: “If a little’s good, then more’s better”

two levels of D&C would be almost 4 times faster, 3
levels almost 8, etc., even though overhead is growing.
Best is usually full recursion down to some small
constant size (balancing ”work” vs ”overhead”).

Another D&C Approach, cont.

Moral 3: unbalanced division not as good:
(.1n)2 + (.9n)2 + n = .82n2 + n

The 18% savings compounds significantly if you carry
recursion to more levels, actually giving O(nlogn), but
with a bigger constant. So worth doing if you can’t get
50-50 split, but balanced is better if you can.
This is intuitively why Quicksort with random splitter is
good – badly unbalanced splits are rare, and not
instantly fatal.

(1)2 + (n − 1)2 + n = n2 − 2n + 2 + n

Little improvement here.

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with
smallest Euclidean distance between them.

Fundamental geometric primitive.

Graphics, computer vision, geographic information
systems, molecular modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST,
Voronoi.

Brute force. Check all pairs of points p and q with Θ(n2)
comparisons.

1-D version. O(n log n) easy if points are on a line.

(Assumption: No two points have same x coordinate.)

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair of Points: Correct Algorithm

Algorithm.

1 Divide: draw vertical line L so that roughly n/2 points
on each side.

2 Conquer: find closest pair in each side recursively.
3 Combine: find closest pair with one point in each side.
4 Return best of 3 solutions.

Closest Pair of Points: Combining Efficiently

Find closest pair with one point in each side, assuming
that distance < δ = min(left half, right half).

Observation: only need to consider points within δ of
line L.
Sort points in 2δ-strip by their y coordinate.
Only check distances of those within 8 positions in
sorted list!

Closest Pair of Points: δ-strip

Def. Let si be the point in the 2δ-strip, with
the ith smallest y-coordinate.

Claim. If |i − j | > 8, then the distance
between si and sj is at least δ.

Pf.

No two points lie in same 1/2δ-by-1/2δ
box.
only 8 boxes

Closest Pair Algorithm

if n ≤ 1 return ∞
Sort points by x coordinate
Choose line L to divide points in half by x coordinate.
δ = min(ClosestPair(left), ClosestPair(right))
Delete all points further than δ from L.
Sort remaining points by y coordinate, say p[1] to p[m]
for i = 1 to m do

k ← 1
while (i + k ≤ m) && (p[i + k].y < p[i].y + δ) do

δ ← min(δ, dist(p[i], p[i + k]))
k ← k + 1

end while
end for

Going From Code to Recurrence

Carefully define what you’re counting, and write it down!

“Let C(n) be the number of distance calculations made
while finding the closest pair of n points”

In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being
counted .

Write Recurrence(s)

Closest Pair of Points: Analysis, distance calcs

Running time:

T (n) =

{
0 if n = 1

2T (n/2) + 7n if n > 1

⇒ T (n) = O(n log n)

BUT - that’s only the number of distance calculations

Closest Pair of Points: Analysis, comparisons

More comparisons needed, b/c of sort ...

Running time.

T (n) =

{
0 if n = 1

2T (n/2) + n log n if n > 1

⇒ T (n) = O(n log2 n)

Q. Can we achieve O(n log n)?

A. Yes. Don’t sort points from scratch each time.

Sort by x at top level only.
Each recursive call returns δ and list of all points sorted
by y
Sort by merging two pre-sorted lists.

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.

O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute
a × b.

Brute force solution: Θ(n2) bit operations.

Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:
Multiply four n

2 -digit integers.
Add n

2 -digit integers, and shift to obtain result.

x = 2n/2x1 + x0

y = 2n/2y1 + y0

x × y = (2n/2x1 + x0)(2
n/2y1 + y0)

= 2nx1y1 + 2n/2(x1y0 + x0y1) + x0y0

T (n) = 4T (n/2) + cn⇒ T (n) = Θ(n2)

Key trick: 2 multiplies for the price of 1:

α = x1 + x0

β = y1 + y0

αβ = (x1 + x0)(y1 + y0)

= x1y1 + (x1y0 + x0y1) + x0y0

(x1y0 + x0y1) = αβ − x1y1 − x0y0

x × y = (2n/2x1 + x0)(2
n/2y1 + y0)

= 2nx1y1 + 2n/2(x1y0 + x0y1) + x0y0

= 2nx1y1 + 2n/2(αβ − x1y1 − x0y0) + x0y0

Karatsuba Multiplication

To multiply two n-digit integers:
Add two n

2 -digit integers.
Multiply three n

2 -digit integers.
Add, subtract, and shift n

2 -digit integers to obtain result.

A = x1y1

B = (x1 + x0)(y1 + y0)

C = x0y0

xy = 2nA + 2n/2(B − A− C) + C

Theorem. [Karatsuba-Ofman, 1962] Can multiply two
n-digit integers in O(n1.585) bit operations.

T (n) = 3T (n/2) + cn⇒ T (n) = O(n1.585)

Multiplication – The Bottom Line

Naive: Θ(n2)

Karatsuba: Θ(n1.59...)

Amusing exercise: generalize Karatsuba to do 5 size n/3
subproblems ⇒ Θ(n1.46...)

Best known: Θ(n log n log log n)

”Fast Fourier Transform”
but mostly unused in practice (unless you need really big
numbers - a billion digits of π, say)

High precision arithmetic IS important for crypto

Recurrences

Where they come from, how to find them (above)

Next: how to solve them

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge
results.

T (n) = 2T (n/2) + cn, n ≥ 2

T (1) = 0

Solution: O(n log n)

The Recurrence

Total time: proportional to C(n)

(loops, copying data, parameter passing, etc.)

Solve:T (1) = c , T (n) = 2T (n/2) + cn

Count work at each level
level num size work
0 1 = 20 n cn
1 2 = 21 n/2 2cn/2
2 4 = 22 n/4 4cn/4
...

...
...

...
i 2i n/2i 2icn/2i

...
...

...
...

k − 1 2k−1 n/2k−1 2k−1cn/2k−1

k 2k n/2k = 1 2kT (1)

2k = n ⇒ k = log n

log n levels, each with O(n) work, ⇒ O(n log n)

Solve:T (1) = c , T (n) = 4T (n/2) + cn

Count work at each level
level num size work
0 1 = 40 n cn
1 4 = 41 n/2 4cn/2
2 16 = 42 n/4 4cn/4
...

...
...

...
i 4i n/2i 4icn/2i

...
...

...
...

k − 1 4k−1 n/2k−1 4k−1cn/2k−1

k 4k n/2k = 1 4kT (1)

∑k
i=0 4icn/2i = O(n2)

Solve:T (1) = c , T (n) = 3T (n/2) + cn

Count work at each level
level num size work
0 1 = 30 n cn
1 3 = 31 n/2 3cn/2
2 9 = 32 n/4 9cn/4
...

...
...

...
i 3i n/2i 3icn/2i

...
...

...
...

k 3k n/2k = 1 3kT (1)

Total Work: T (n) =
∑k

i=0 3icn/2i

Solve:T (1) = c , T (n) = 3T (n/2) + cn (cont.)

Master Divide and Conquer Recurrence

If T (n) = aT (n/b) + cnk for n > b then

if a > bk then T (n) is Θ(nlogb a).
(many subproblems ⇒ leaves dominate)
if a < bk then iT (n) is Θ(nk)
(few subproblems ⇒ top level dominates)
if a = bk then T (n) is Θ(nk logn)
(balanced ⇒ all log n levels contribute)

True even if it is dn/be instead of n/b.

Divide And Conquer Summary

If base algorithm is super-linear, dividing into pieces can
help. ”Two halves better than a whole.”

Very carefully analyze the recurrence. Some constants
matter, be careful not to miss anything.

Solve recurrence with recursion tree or Master Recurrence

More applications

More applications of divide & Conquer in the book:

Polynomial Multiplication

Fast Fourier Transform

very useful in signal processing

	Basic Idea
	Mergesort Review
	Why does it work?

	More Real Applications
	Closest Pair of Points
	Integer Multiplication

	Solving Recurrences

