Divide And Conquer

Imran Rashid

University of Washington

February 14, 2008



Lecture Outline

Basic Idea



Lecture Outline

Basic Idea

Mergesort Review
m Why does it work?



Lecture Outline

Basic Idea

Mergesort Review
m Why does it work?

More Real Applications
m Closest Pair of Points
m Integer Multiplication



Lecture Outline

Basic Idea

Mergesort Review
m Why does it work?

More Real Applications
m Closest Pair of Points

m Integer Multiplication

Solving Recurrences



Outline

Basic Idea



Algorithm Design Techniques

m Divide & Conquer

m Reduce problem to one or more sub-problems of the
same type

m Typically, each sub-problem is at most a constant
fraction of the size of the original problem

m e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)



Outline

Mergesort Review
m Why does it work?



Mergesort — The Recurrence

m Mergesort: (recursively) sort 2 half-lists,

then merge results.
m 7(n)=2T(n/2)+cn,n>2
m7(1)=0
m Solution: T(n) = O(nlog n) (details
later)

Log n levels

O(n)
work
per

level



Merge Sort — Algorithm

Algorithm 1 MergeSort(A[L...n])
if n=1return A
L = MergeSort(A[l...n/2])
U = MergeSort(A[n/2 + 1...n])
return Merge(U, L)

Algorithm 2 Merge(L[1...n], U[1...n])
C, new array [1...2n]
a=1b=1
for i =1 to 2ndo
C[i] = smaller of L[a], U[b], and correspondingly a++ or
b+
end for
return C




Going From Code to Recurrence

m Carefully define what you're counting, and write it down!
m “Let C(n) be the number of comparisons between sort
keys used by MergeSort when sorting a list of length n 1”
m In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being counted .

m Write Recurrence(s)



The Recurrence

0 ifn=1
Tin) = {2T(n/2) Y1) ifn>1

m Total time: proportional to T(n) (loops, copying data,
parameter passing, etc.)



Why Balanced Subdivision?

m Alternative "divide & conquer” algorithm:

Sort n-1
Sort last 1
Merge them

m T(n)=T(n—1)+ T(1)+2nfor n>2
m7(1)=0
m Solution: T(n)=2n+2(n—1)+2(n—2)...=0(n?)



Another D& C Approach

m Suppose we've already invented DumbSort, taking time n?
m Try Just One Level of divide & conquer:

m DumbSort(first n/2 elements)

m DumbSort(last n/2 elements)

m Merge results
m Time:2(n/2)> +n=n*/2+n< n?

m Almost twice as fast!




Another D& C Approach, cont.

m Moral 1: "“two halves are better than a whole”
m Two problems of half size are better than one full-size
problem, even given the O(n) overhead of recombining,
since the base algorithm has super-linear complexity.

m Moral 2: “If a little's good, then more's better”
m two levels of D&C would be almost 4 times faster, 3
levels almost 8, etc., even though overhead is growing.
Best is usually full recursion down to some small
constant size (balancing "work” vs "overhead").



Another D& C Approach, cont.

m Moral 3: unbalanced division not as good:
m (.1n)2+(.9n)2 +n=.82n%>+n

m The 18% savings compounds significantly if you carry
recursion to more levels, actually giving O(nlogn), but
with a bigger constant. So worth doing if you can't get
50-50 split, but balanced is better if you can.

m This is intuitively why Quicksort with random splitter is
good — badly unbalanced splits are rare, and not
instantly fatal.

m (1)2+(n—1)2+n=n*>-2n+2+n

m Little improvement here.



Outline

More Real Applications
m Closest Pair of Points
m Integer Multiplication



Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with

smallest Euclidean distance between them.

m Fundamental geometric primitive.

m Graphics, computer vision, geographic information
systems, molecular modeling, air traffic control.

m Special case of nearest neighbor, Euclidean MST,
Voronoi.

Brute force. Check all pairs of points p and g with ©(n?)
comparisons.

1-D version. O(nlog n) easy if points are on a line.

(Assumption: No two points have same x coordinate.)



Closest Pair of Points: First Attempt

m Divide. Sub-divide region into 4 quadrants.




Closest Pair of Points: First Attempt

m Divide. Sub-divide region into 4 quadrants.
m Obstacle. Impossible to ensure n/4 points in each piece.

G L
° :. °:o
:. s %, °
e o o
° ° oo




Closest Pair of Points: Correct Algorithm

m Algorithm.

Divide: draw vertical line L so that roughly n/2 points
on each side.




Closest Pair of Points: Correct Algorithm

m Algorithm.
Divide: draw vertical line L so that roughly n/2 points
on each side.
Conquer: find closest pair in each side recursively.

° L ° . °
° ° °
° ° ° *
° °
o ° / 21
° ° °
°
12 ° O ° ° .
L] (] = °
° °




Closest Pair of Points: Correct Algorithm

m Algorithm.
Divide: draw vertical line L so that roughly n/2 points
on each side.
Conquer: find closest pair in each side recursively.
Combine: find closest pair with one point in each side.

o L ° ° (]
L] L] L]
° ° ° °
L]
o 8 / 21
° ° °
°
];2/0 e ° ° ° °
° ° ® °
© L]




Closest Pair of Points: Correct Algorithm

m Algorithm.
Divide: draw vertical line L so that roughly n/2 points
on each side.
Conquer: find closest pair in each side recursively.
Combine: find closest pair with one point in each side.
Return best of 3 solutions.
m But isn’t the Combine step ©(n?)!!

L] L ° . o
o * L]
° ° > °
(]
o o / 21
° L °
°
];2/0 ® ° ° ° o
o L] = °
o o



Closest Pair of Points: Combining Efficiently

m Find closest pair with one point in each side, assuming
that distance < § = min(left half, right half).

it /21

8= min(12, 21)




Closest Pair of Points: Combining Efficiently

m Find closest pair with one point in each side, assuming
that distance < § = min(left half, right half).
m Observation: only need to consider points within § of
line L.

8= mm(12, 21)




Closest Pair of Points: Combining Efficiently

m Find closest pair with one point in each side, assuming
that distance < § = min(left half, right half).
m Observation: only need to consider points within § of
line L.
m Sort points in 24-strip by their y coordinate.




Closest Pair of Points: Combining Efficiently

m Find closest pair with one point in each side, assuming
that distance < § = min(left half, right half).
m Observation: only need to consider points within § of
line L.
m Sort points in 24-strip by their y coordinate.
m Only check distances of those within 8 positions in

sorted list!




Closest Pair of Points: d-strip

m Def. Let s; be the point in the 2)-strip, with
the ith smallest y-coordinate.
m Claim. If |i — j| > 8, then the distance
between s; and s; is at least 9.
m Pf.
m No two points lie in same 1/2§-by-1/24

box.
m only 8 boxes

e
(1)
® (0}
©
7]
(=)
(o]

(SO

(S



Closest Pair Algorithm

if n <1 return co
Sort points by x coordinate
Choose line L to divide points in half by x coordinate.
d = min(ClosestPair(left), ClosestPair(right))
Delete all points further than § from L.
Sort remaining points by y coordinate, say p[1] to p[m]
for i=1to mdo
k—1
while (i + k < m) && (p[i + k].y < pli].y + ¢) do
d < min(0, dist(p[i], p[i + k]))
k—k+1
end while
end for




Going From Code to Recurrence

m Carefully define what you're counting, and write it down!
m “Let C(n) be the number of distance calculations made
while finding the closest pair of n points”
m In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being
counted .

m Write Recurrence(s)



Closest Pair of Points: Analysis, distance calcs

m Running time:

0 ifn=1
Tin) = {2T(n/2) Y70 ifn>1

= T(n) = O(nlog n)

m BUT - that's only the number of distance calculations



Closest Pair of Points: Analysis, comparisons

m More comparisons needed, b/c of sort ...
m Running time.

T(n) = 0 !fnzl
2T(n/2) + nlogn ifn>1

= T(n) = O(nlog®n)

m Q. Can we achieve O(nlog n)?
m A. Yes. Don't sort points from scratch each time.
m Sort by x at top level only.
m Each recursive call returns § and list of all points sorted

by y
m Sort by merging two pre-sorted lists.



Integer Arithmetic

m Add. Given two n-digit integers a and b, compute a + b.
m O(n) bit operations.
m Multiply. Given two n-digit integers a and b, compute
a x b.
m Brute force solution: ©(n?) bit operations.



Divide-and-Conquer Multiplication: Warmup

m To multiply two n-digit integers:
m Multiply four 7-digit integers.
m Add 7-digit integers, and shift to obtain result.

n
x =2"2x + xo
y=2""y1+4yo
x Xy = (2"%x + x0)(2"%y1 + )
= 2"x1y1 + 2" (x1y0 + Xoy1) + %Yo
n

T(n) =4T(n/2) 4 cn= T(n) = 6(n?)



Key trick: 2 multiplies for the price of 1:

a =X+ Xo
B=y1+¥
aff = (x1+ x0)(y1 + Yo)
= x1y1 + (Yo + Xoy1) + Xo¥o
(x1y0 + xoy1) = B — x1y1 — Xo¥o



Key trick: 2 multiplies for the price of 1:

a =X+ X
B=y1+¥
af = (3 +x)(n + )
= xuy1 + (x1yo + xoy1) + Xo¥o
(x1y0 + xoy1) = B — x1y1 — Xo¥o

x Xy = (2"2x; 4 x0)(2"2y1 + yo)
= 2"y + 2" (xuy0 + Xoy1) + XoYo
= 2"xqy1 + 2% (aff — xay1 — Xoy0) + XoYo



Karatsuba Multiplication

m To multiply two n-digit integers:
m Add two 3-digit integers.
m Multiply three 3-digit integers.
m Add, subtract, and shift 3-digit integers to obtain result.

A=xiy
B = (x1 + x0)(y1 + y0)
C = xo¥0

xy =2"A+2"2(B—A—-C)+C

m Theorem. [Karatsuba-Ofman, 1962] Can multiply two
n-digit integers in O(n'-°®®) bit operations.

T(n) =3T(n/2) 4+ cn = T(n) = O(n**®)



Multiplication — The Bottom Line

Naive: @(n2)
Karatsuba: ©(n!-%)

Amusing exercise: generalize Karatsuba to do 5 size n/3
subproblems = @(n1.46.,,)

m Best known: ©(nlog nloglog n)

m "Fast Fourier Transform”
m but mostly unused in practice (unless you need really big
numbers - a billion digits of 7, say)

High precision arithmetic IS important for crypto



Outline

Solving Recurrences



Recurrences

m Where they come from, how to find them (above)

m Next: how to solve them



Mergesort (review)

m Mergesort: (recursively) sort 2 half-lists, then merge

results.
m T(n)=2T(n/2)+cn, n>2
m 7(1)=0

m Solution: O(nlog n)



The Recurrence

m Total time: proportional to C(n)

[ (Ioops, copying data, parameter passing, etc.)



Solve:T(1) = ¢, T(n) =2T(n/2) + cn

m Count work at each level

level num size work
0 1=2 n cn
1 |2=2! n/2 2¢cn/2
2 | 4=22 n/4 4cn/4
i 2f n/2 2cn/2!
k—1| 2k=1 | pjok=t | ok=lcp k=1
k 2k n/2k =1 2KT(1)
m2fk=n = k =logn

m log n levels, each with O(n) work, = O(nlogn)



Solve:T(1) = ¢, T(n) =4T(n/2) + cn

m Count work at each level

level num size work
0 1=40 n cn
1 4 =4t n/2 4cn /2
2 16 = 42 n/4 4cen/4
i 4 n/2f 4icn/2!
k—1| 4kt | pjok-t | gk-lcp okt
k 4k n/2k =11 4%T(1)

m YK 4en/2' = O(n?)



Solve:T(1) = ¢, T(n) =3T(n/2) + cn

m Count work at each level
level | num size work
0 [1=23° n cn
1 |3=3 n/2 3cn/2
2 |9=3 n/4 9cn/4

i 3 n/2" | 3icn/2f

k | 3% | n/2k=1|3T(1)
m Total Work: T(n) =% 3/cn/2f



Solve:T(1) = ¢, T(n) =3T(n/2) + cn (cont.)




Solve:T(1) = ¢, T(n) =3T(n/2) + cn (cont.)




Solve:T(1) = ¢, T(n) =3T(n/2) + cn (cont.)




Solve:T(1) = ¢, T(n) =3T(n/2) + cn (cont.)

e é) : (2) for () 10 (6)

> _ logyn
= 3cn? (3) _ (b|0gba)logbn
Sk = (e
— 3c (3°%") (5) =
= 3c (n'°82?) (6)
= O(n"**") (7)



Master Divide and Conquer Recurrence

m If T(n) =aT(n/b) + cn* for n > b then
m if 2 > b¥ then T(n) is O(n'°8s2).
(many subproblems = leaves dominate)
m if a < b¥ then iT(n) is ©(n)
(few subproblems = top level dominates)
m if a = b¥ then T(n) is ©(n*logn)
(balanced = all log n levels contribute)

m True even if it is [n/b] instead of n/b.



Divide And Conquer Summary

m If base algorithm is super-linear, dividing into pieces can
help. " Two halves better than a whole.”

m Very carefully analyze the recurrence. Some constants
matter, be careful not to miss anything.

m Solve recurrence with recursion tree or Master Recurrence



More applications

More applications of divide & Conquer in the book:
m Polynomial Multiplication
m Fast Fourier Transform

m very useful in signal processing



	Basic Idea
	Mergesort Review
	Why does it work?

	More Real Applications
	Closest Pair of Points
	Integer Multiplication

	Solving Recurrences

