
Huffman Codes

Imran Rashid

University of Washington

January 30, 2008



Lecture Outline

1 Huffman Codes



Compression Example

100k file, 6 letter alphabet:

File Size:

ASCII, 8 bits/char:
800kbits
23 > 6; 3 bits/char:
300kbits

better: (.45 + .13 + .12) ∗
2 + (.16 + .09 + .05) ∗ 4 =
2.6bits / char
Optimal?

letter freq
a .45
b .13
c .12
d .16
e .09
f .05



Compression Example

100k file, 6 letter alphabet:

File Size:

ASCII, 8 bits/char:
800kbits
23 > 6; 3 bits/char:
300kbits

better: (.45 + .13 + .12) ∗
2 + (.16 + .09 + .05) ∗ 4 =
2.6bits / char
Optimal?

letter freq code
a .45 00
b .13 01
c .12 10
d .16 1100
e .09 1101
f .05 1110



Data Compression

Binary character code (“code”)

each k-bit source string maps to unique code word (e.g.
k=8)
“compression” alg: concatenate code words for
successive k-bit “characters” of source

Fixed/variable length codes

all code words equal length?

Prefix codes

no code word is prefix of another (unique decoding)



Prefix Codes = Trees



Greedy Idea #1

Put most frequent under root, then
recurse

Too greedy: unbalanced tree

.45 ∗ 1 + .16 ∗ 2 + . . . = 2.34

not too bad, but imagine if all freqs
were 1/6
(1 + 2 + 3 + 4 + 5 + 5)/6 = 3.33

letter freq
a .45
b .13
c .12
d .16
e .09
f .05



Greedy Idea #2

Divide letters into 2 groups,
with ≈ 50% weight in
each;recurse(Shannon-Fano
code)

Again, not terrible:

2 ∗ .5 + 3 ∗ .5 = 2.5

But this tree can easily be
improved! (How?)



Greedy idea #3

Group least frequent letters near bottom



Huffman example



Huffman’s Algorithm (1952)

Insert node for each letter into priority queue by freq
while queue length > 1 do

Remove smallest 2 nodes, call them x , y
Make new node z with children x , y .
f (z) = f (x) + f (y)
Insert z into queue

end while

Analysis:

O(n) heap ops: O(n log n)

Goal: Minimize B(T ) =
∑

freq(c) ∗ depth(c)

Correctness: ???



Correctness Strategy

Optimal solution may not be unique, so cannot prove that
greedy gives the only possible answer.

Instead, show that greedy’s solution is as good as any.



Inversions

A pair of leaves x , y is in an inversion if
depth(x) ≥ depth(y)
and
freq(x) ≥ freq(y)

Claim: if we flip an inversion, cost never increases.

(d(x) ∗ f (x) + d(y) ∗ f (y))︸ ︷︷ ︸
before

− (d(x) ∗ f (y) + d(y) ∗ f (x))︸ ︷︷ ︸
after

=

(d(x)− d(y)) ∗ (f (x)− f (y)) ≥ 0



Lemma 1: “Greedy Choice Property”

The 2 least frequent letters might as well be siblings at
deepest level

Let a be least freq, b 2nd
Let u, v be siblings at max depth, f (u) ≤ f (v) (why
must they exist?)
Then (a, u) and (b, v) are inversions. Swap them.



Lemma 2

Let (C , f ) be a problem instance: C an n-letter alphabet
with letter frequencies f (c) for c ∈ C .

For any x , y ∈ C , let C ′ be the (n − 1) letter alphabet
C − {x , y} ∪ {z} and for all c ∈ C ′ define

Let T ′ be an optimal tree for (C ′, f ′).

Then create tree T by adding x , y as children of z in T ′.

T is optimal for (C , f ) among all trees having x , y as
siblings



Proof of Lemma 2

Proof.

B(T ) =
∑
c∈C

dT (c) ∗ f (c)

B(T )− B(T ′) = dT (x) ∗ (f (x) + f (y))− dT ′(z) ∗ f ′(z)

= (dT ′(z) + 1) ∗ f ′(z)− dT ′(z) ∗ f ′(z)

= f ′(z)

Suppose T̂ (having x , y siblings) is better than T (eg.,

B(T̂ ) < B(T )). Collapse x , y to form T̂ ′. As above,

B(T̂ )− B(T̂ ′) = f ′(z). Then

B(T̂ ′) = B(T̂ )− f ′(z) < B(T )− f ′(z) = B(T ′). This
contradicts the optimality of T ′.



Theorem: Huffman gives optimal codes

Proof.

By Induction on |C |.
Basis: n = 1, 2 – immediate

Induction: n > 2

Let x , y be least frequent
Form C ′, f ′,&z , as above
By induction, T ′ is opt for (C ′, f ′)
By lemma 2, T created from T ′ as above, is opt for
(C , f ) among trees with x , y as siblings
By lemma 1, some opt tree has x , y as siblings
Therefore, T is optimal.



Data Compression

Huffman is optimal.

BUT still might do ”better”

Huffman uses one encoding throughout a file. What if
characteristics change?
What if data has structure? E.g. raster images,
video,. . .
Huffman is lossless. Necessary?

LZW, MPEG, . . .


	Huffman Codes

