Huffman Codes

Imran Rashid

University of Washington

February 3, 2008

Lecture Outline

Huffman Codes

Compression Example

m 100k file, 6 letter alphabet:

m File Size: letter freq
m ASCII, 8 bits/char: a 45
800kbits b 13

m 23 > 6; 3 bits/char: o 12
300kbits d 16

e .09

f .05

Compression Example

m 100k file, 6 letter alphabet:

m File Size: letter freq code
m ASCII, 8 bits/char: a 45 00
800kbits b 13 01

m 23 > 6; 3 bits/char: o 12 10
300kbits d .16 1100

m better: (.45 4 .13 + .12) % e 09 1101

2+ (.16 +.09 + .05) x 4 = f 05 1110

2.6bits / char
m Optimal?

Data Compression

m Binary character code (“code”)

m each k-bit source string maps to unique code word (e.g.
k=8)

m ‘“compression” alg: concatenate code words for
successive k-bit “characters” of source

m Fixed/variable length codes
m all code words equal length?
m Prefix codes
m no code word is prefix of another (unique decoding)

Prefix Codes = Trees

9 /
[aa8] B:13] (c:12] 18] [e9] [£3]

Greedy Idea #1

letter freq
a 45
b 13
m Put most frequent under root, then c 12
recurse d 16
e .09
m Too greedy: unbalanced tree f 05
mA45x1+.16%2+...=2.34 :
® not too bad, but imagine if all freqs
were 1/6

(1+2+34+4+5+5)/6=333

Greedy Idea #2

m Divide letters into 2 groups,
with =~ 50% weight in
each;recurse(Shannon-Fano
code)

m Again, not terrible:

2x.54+3x.5=25

m But this tree can easily be b:13/c:12|d: 16 e:9 |
improved! (How?)

Greedy idea #3

m Group least frequent letters near bottom

Huffman example

@ [5 G2 B @ 5 o =2 Bl n
0/ \1l
[£5] [e:9]

Huffman example

@ (@ =) 2 &6 &6 = =2 EB

Huffman's Algorithm (1952)

Insert node for each letter into priority queue by freq
while queue length > 1 do

Remove smallest 2 nodes, call them x, y

Make new node z with children x, y.

f(z) = f(x) + f(y)

Insert z into queue
end while

m Analysis: O(n) heap ops: O(n log n)
m Goal: Minimize B(T) = > freq(c) * depth(c)

m Correctness: 777

Correctness Strategy

m Optimal solution may not be unique, so cannot prove that
greedy gives the only possible answer.

m Instead, show that greedy'’s solution is as good as any.

Inversions

m A pair of leaves x, y is in an inversion if
depth(x) > depth(y)
and
freq(x) > freq(y)

m Claim: if we flip an inversion, cost never increases.

(d(x) = f(x) + d(y) = f(y)) = (d(x) = f(y) + d(y) = f(x)) =
be;‘:)re aTPtrer
(d(x) — d(y)) = (f(x) = f(y)) = 0

Lemma 1: “Greedy Choice Property”

m The 2 least frequent letters might as well be siblings at
deepest level
m Let a be least freq, b 2nd
m Let u, v be siblings at max depth, f(u) < f(v) (why
must they exist?)
m Then (a,u) and (b, v) are inversions. Swap them.

Lemma 2

Let (C, f) be a problem instance: C an n-letter alphabet
with letter frequencies f(c) for c € C.

m For any x,y € C, let C' be the (n — 1) letter alphabet
C—{xytu{z}.

m Forallce C',c# z, let f'(c) = f(c). And let
f'(z) = f(x)+ f(y).

m Let T’ be an optimal tree for (C', f').

Then create tree T by adding x, y as children of z in T".

T is optimal for (C, f) among all trees having x,y as
siblings

Proof of Lemma 2

T)= Z dr(c) = f(c)
ceC
B(T) = B(T') = dr(x) * (f(x) + f(y)) — dr(2) * f'(2)
= (dr/(2) + 1) x f'(2) — d7/(2) f'(2)
_(2)

Suppose T (having x ,y siblings) is better than T (eg., B(T) < B(T)).
CoIIapse X,y to form T’. As above, B(T) B(T’) = f'(z). Then
B(T’) = (T)—f'(z) < B(T) — f'(z) = B(T’). This contradicts the

optimality of T".]

Theorem: Huffman gives optimal codes

By Induction on |C|.

m Basis: n=1,2 — immediate
m Induction: n > 2
m Let x, y be least frequent
m Form C’,f’ &z, as above
m By induction, T’ is opt for (C', ')
m By lemma 2, T created from T’ as above, is opt for
(C,) among trees with x, y as siblings
m By lemma 1, some opt tree has x, y as siblings
m Therefore, T is optimal.

Data Compression

m Huffman is optimal.
m BUT still might do " better”
m Huffman uses one encoding throughout a file. What if

characteristics change?
m What if data has structure? E.g. raster images,

video,. ..
m Huffman is lossless. Necessary?

s LZW, MPEG, ...

	Huffman Codes

