Graph Algorithms

Imran Rashid

University of Washington

Jan 16, 2008

1 / 26

K ロ > K 레 > K 코 > K 코 > 그리스 9 Q Q ^

Lecture Outline

1 [BFS](#page-2-0) **[Bipartite Graphs](#page-3-0)**

2 [DAGs & Topological Ordering](#page-10-0)

2 / 26

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

3 [DFS](#page-25-0)

Lecture Outline

1 [BFS](#page-2-0) **[Bipartite Graphs](#page-3-0)**

2 [DAGs & Topological Ordering](#page-10-0)

3 [DFS](#page-25-0)

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q 3 / 26

Bipartite Graphs

Def. An undirected graph $G = (V, E)$ is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

4 / 26

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

- **Applications.**
	- Stable marriage: men $=$ red, women $=$ blue
	- Scheduling: machines $=$ red, jobs $=$ blue

Testing Bipartiteness

- Testing bipartiteness. Given a graph G, is it bipartite? **Many graph problems become:**
	- **E** easier if the underlying graph is bipartite (matching)
	- \blacksquare tractable if the underlying graph is bipartite (independent set)
	- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

5 / 26

An Obstruction to Bipartiteness

Lemma

If a graph G is bipartite, it cannot contain an odd length cycle.

Proof.

Impossible to 2-color the odd cycle, let alone G.

BFS & Bipartite Graphs

Lemma

Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by $BFS(s)$. Exactly one of the following holds.

- **1** No edge joins nodes of the same layer, and G is bipartite.
- **2** An edge joins nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

BFS & Bipartite Graphs

Lemma

Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by $BFS(s)$. Exactly one of the following holds.

- **1** No edge joins nodes of the same layer, and G is bipartite.
- **2** An edge joins nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Proof.

(1)

- **Suppose no edge joins two nodes in the same layer.**
- So all edges join nodes on adjacent levels (prop of BFS).
- Bipartitio[n](#page-5-0): $red = odd$ $red = odd$ $red = odd$ le[ve](#page-8-0)[ls](#page-3-0), blue $=$ even [l](#page-6-0)e[v](#page-9-0)els[.](#page-9-0)

BFS & Bipartite Graphs

Lemma

Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS(s). Exactly one of the following holds.

- **1** No edge joins nodes of the same layer, and G is bipartite.
- **2** An edge joins nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Proof.

(2)Suppose (x, y) is an edge & x, y in same level L_j . Let $z =$ their lowest common ancestor in BFS tree. Let L_i be level containing z . Consider cycle that takes edge from x to y , then tree from y to z, then tree from z to x. Its length is $1 + 2(i - i)$, which is odd.

Obstruction to Bipartiteness

Corollary

A graph G is bipartite iff it contains no odd length cycle.

イロト イ優 トメ ミト スミトリ (生 209 8 / 26

Lecture Outline

2 [DAGs & Topological Ordering](#page-10-0)

K ロ X K @ X K 할 X K 할 X (할 X) 2990 9 / 26

Precedence Constraints

- Precedence constraints. Edge $(\mathsf{v}_i,\mathsf{v}_j)$ means task v_i must occur before v_j .
- **Applications**
	- **Course prerequisite graph: course** v_i **must be taken** before v_i
	- Gompilation: must compile module v_i before v_i
	- Pipeline of computing jobs: output of job v_i is part of input to job v_i
	- **Manufacturing or assembly: sand it before you paint it**

Directed Acyclic Graphs

- Def. A DAG is a directed acyclic graph, i.e., one that contains no directed cycles.
- **Def.** A topological order of a directed graph $G = (V, E)$ is an ordering of its nodes as v_1, v_2, \ldots, v_n so that for every edge $(\mathsf{v}_i,\mathsf{v}_j)$ we have $i < j.$

$Topological Order \Rightarrow DAG$

Lemma

If G has a topological order, then G is a DAG.

Proof.

- Suppose that G has a topological order v_1, \ldots, v_n and that G also has a directed cycle C.
- Let v_i be the lowest-indexed node in C , and let v_j be the node just before $v_i;$ thus (v_j,v_i) is an edge. By our choice of $i,$ we have $i < j.$
- But, since $(\mathsf{v}_j,\mathsf{v}_i)$ is an edge and $\mathsf{v}_1,\ldots,\mathsf{v}_n$ is a topological order, we must have $j < i$, a contradiction.

 \Box

$DAG \Rightarrow Topological Order ?$

Lemma

If G has a topological order, then G is a DAG.

■ Q. Does every DAG have a topological ordering?

13 / 26

K ロンス 御 > ス ヨ > ス ヨ > ニ ヨ

■ Q. If so, how do we compute one?

DAGs have "source"

Lemma

If G is a DAG, then G has a node with no incoming edges.

Proof.

- **B** Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- **Pick any node v, and begin following edges backward from v. Since v has at** least one incoming edge (u, v) we can walk backward to u.
- **Then, since u has at least one incoming edge** (x, u) **, we can walk backward to x.**
- Repeat until we visit a node, say w , twice.
- \blacksquare Let C be the sequence of nodes encountered between successive visits to w. C is a cycle.

 \Box

$DAG \Rightarrow$ Topological ordering

Lemma

If G is a DAG, then G has a topological ordering.

Proof.

By Induction on n , number of nodes

- Base case: true if $n = 1$.
- Given DAG on $n > 1$ nodes, find a node v with no incoming edges.
- **G** − { v } is a DAG, since deleting v cannot create cycles. By inductive hypothesis, $G - \{v\}$ has a topological ordering.
- **■** Place v first in topological ordering; then append nodes of $G \{v\}$ in topological order. This is valid since v has no incoming edges.

П

イロト イ団 トイモト イモト 性 299 16 / 26

イロト イ優 トメ ミト スミトリ (生 299 16 / 26

イロト イ優 トメ ミト スミトリ (生 299 16 / 26

K ロ X K @ X K 할 X K 할 X (할 2990 16 / 26

K ロ X K @ X K 할 X K 할 X (할 2990 16 / 26

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 100 Q Q 16 / 26

K ロ > K 個 > K 할 > K 할 > 그럴 > 이익어 16 / 26

Topological Sorting Algorithm

 $count[w] \leftarrow (remaining)$ number of incoming edges to w $S \leftarrow$ set of (remaining) nodes with no incoming edges while S not empty do Remove some v from S make v next in topological order \Rightarrow $O(1)$ per node for all edges from v to some w do \Rightarrow O(1) per edge decrement count[w] if count $[w] = 0$ then add w to S end if end for end while

running time $O(m+n)$

Lecture Outline

2 [DAGs & Topological Ordering](#page-10-0)

Depth-First Search

- \blacksquare Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can
- Naturally implemented using recursive calls or a stack

DFS(v) – Recursive version

```
■ for all nodes v, v.dfs# = -1 ("undiscovered")
d dfscounter = 0
```

```
DFS(v):
  v.dfs\# =dfscounter++for all edge (v, x) do
     if x.dfs\# = -1 then
         DFS(x)else
         (code for back edges, etc.)
     end if
     Mark v "completed"
  end for
```
DFS(v) - explicit stack

```
Initialize all vertices to "undiscovered"
Mark v "discovered"
Push (v, 1) onto stack
while stack not empty do
    (u, i) = pop(state)while i \leq deg(u) do
        x \leftarrow i^{th} vertex on \textit{u}^{\prime}s edge list
        if x undiscovered then
            mark x "discovered"
            push(u, i + 1)u \leftarrow xi \leftarrow 1end if
                                               K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q
    end while
```
21 / 26

 299 ∍ $22/26$

 299 $22/26$

 299 ∍ $22/26$

E 299 $22/26$

Properties of (Undirected) DFS(v)

\blacksquare Like BFS(v):

- \blacksquare DFS(v) visits x if and only if there is a path in G from v to x (through previously unvisited vertices)
- **Edges into then-undiscovered vertices define a tree** the "depth first spanning tree" of G
- Unlike the BFS tree:
	- \blacksquare the DF spanning tree isn't minimum depth
	- \blacksquare its levels don't reflect min distance from the root
	- non-tree edges never join vertices on the same or adjacent levels
- \blacksquare BUT \ldots

Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree
- No cross edges!

Why fuss about trees (again)?

As with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple"–only descendant/ancestor

A simple problem on trees

- Given: tree T, a value $L(v)$ defined for every vertex v in T
- Goal: find $M(v)$, the min value of $L(v)$ anywhere in the subtree rooted at v (including v itself).
- **How?** Depth first search, using:

$$
M(v) = \begin{cases} L(v) & \text{if } v \text{ is a leaf} \\ min(L(v), min_{w \in children(v)} M(w)) & \text{else} \end{cases}
$$

26 / 26

K ロ X K @ X K 할 X K 할 X (할