
Graph Algorithms

Imran Rashid

University of Washington

Jan 16, 2008

1 / 26



Lecture Outline

1 BFS
Bipartite Graphs

2 DAGs & Topological Ordering

3 DFS

2 / 26



Lecture Outline

1 BFS
Bipartite Graphs

2 DAGs & Topological Ordering

3 DFS

3 / 26



Bipartite Graphs

Def. An undirected graph G = (V , E ) is bipartite if the
nodes can be colored red or blue such that every edge has
one red and one blue end.
Applications.

Stable marriage: men = red, women = blue
Scheduling: machines = red, jobs = blue

4 / 26



Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
Many graph problems become:

easier if the underlying graph is bipartite (matching)
tractable if the underlying graph is bipartite
(independent set)

Before attempting to design an algorithm, we need to
understand structure of bipartite graphs.

5 / 26



An Obstruction to Bipartiteness

Lemma

If a graph G is bipartite, it cannot contain an odd length cycle.

Proof.

Impossible to 2-color the odd cycle, let alone G.

6 / 26



BFS & Bipartite Graphs

Lemma

Let G be a connected graph, and let L0, . . . , Lk be the layers
produced by BFS(s). Exactly one of the following holds.

1 No edge joins nodes of the same layer, and G is bipartite.

2 An edge joins nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

case 1 case 2
7 / 26



BFS & Bipartite Graphs

Lemma

Let G be a connected graph, and let L0, . . . , Lk be the layers
produced by BFS(s). Exactly one of the following holds.

1 No edge joins nodes of the same layer, and G is bipartite.

2 An edge joins nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Proof.

(1)

Suppose no edge joins two nodes in the same layer.

So all edges join nodes on adjacent levels (prop of BFS).

Bipartition: red = odd levels, blue = even levels.
7 / 26



BFS & Bipartite Graphs

Lemma

Let G be a connected graph, and let L0, . . . , Lk be the layers
produced by BFS(s). Exactly one of the following holds.

1 No edge joins nodes of the same layer, and G is bipartite.

2 An edge joins nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Proof.

(2)Suppose (x , y) is an edge & x , y in same level Lj . Let z =
their lowest common ancestor in BFS tree. Let Li be level
containing z . Consider cycle that takes edge from x to y , then
tree from y to z , then tree from z to x . Its length is
1 + 2(j − i), which is odd.

7 / 26



Obstruction to Bipartiteness

Corollary

A graph G is bipartite iff it contains no odd length cycle.

8 / 26



Lecture Outline

1 BFS
Bipartite Graphs

2 DAGs & Topological Ordering

3 DFS

9 / 26



Precedence Constraints

Precedence constraints. Edge (vi , vj) means task vi must
occur before vj .

Applications

Course prerequisite graph: course vi must be taken
before vj

Compilation: must compile module vi before vj

Pipeline of computing jobs: output of job vi is part of
input to job vj

Manufacturing or assembly: sand it before you paint it

10 / 26



Directed Acyclic Graphs

Def. A DAG is a directed acyclic graph, i.e., one that
contains no directed cycles.

Def. A topological order of a directed graph G = (V , E )
is an ordering of its nodes as v1, v2, . . . , vn so that for
every edge (vi , vj) we have i < j .

a DAG

topological ordering of the
DAG

11 / 26



Topological Order ⇒ DAG

Lemma

If G has a topological order, then G is a DAG.

Proof.

Suppose that G has a topological order v1, . . . , vn and that G also has a
directed cycle C .

Let vi be the lowest-indexed node in C , and let vj be the node just before vi ;
thus (vj , vi ) is an edge. By our choice of i , we have i < j .

But, since (vj , vi ) is an edge and v1, . . . , vn is a topological order, we must have
j < i , a contradiction.

12 / 26



DAG ⇒ Topological Order ?

Lemma

If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

13 / 26



DAGs have “source”

Lemma

If G is a DAG, then G has a node with no incoming edges.

Proof.

Suppose that G is a DAG and every node has at least one incoming edge. Let’s
see what happens.

Pick any node v , and begin following edges backward from v . Since v has at
least one incoming edge (u, v) we can walk backward to u.

Then, since u has at least one incoming edge (x , u), we can walk backward to x .

Repeat until we visit a node, say w , twice.

Let C be the sequence of nodes encountered between successive visits to w . C
is a cycle.

14 / 26



DAG ⇒ Topological ordering

Lemma

If G is a DAG, then G has a topological ordering.

Proof.

By Induction on n, number of nodes

Base case: true if n = 1.

Given DAG on n > 1 nodes, find a node v with no incoming edges.

G − {v} is a DAG, since deleting v cannot create cycles. By inductive
hypothesis, G − {v} has a topological ordering.

Place v first in topological ordering; then append nodes of G − {v} in
topological order. This is valid since v has no incoming edges.

15 / 26



Topological Ordering Algorithm: Example

16 / 26



Topological Ordering Algorithm: Example

16 / 26



Topological Ordering Algorithm: Example

16 / 26



Topological Ordering Algorithm: Example

16 / 26



Topological Ordering Algorithm: Example

16 / 26



Topological Ordering Algorithm: Example

16 / 26



Topological Ordering Algorithm: Example

16 / 26



Topological Sorting Algorithm

count[w ]← (remaining) number of incoming edges to w
S ← set of (remaining) nodes with no incoming edges
while S not empty do

Remove some v from S
make v next in topological order . O(1) per node
for all edges from v to some w do . O(1) per edge

decrement count[w ]
if count[w ] = 0 then add w to S
end if

end for
end while

running time O(m + n)
17 / 26



Lecture Outline

1 BFS
Bipartite Graphs

2 DAGs & Topological Ordering

3 DFS

18 / 26



Depth-First Search

Follow the first path you find as far as you can go

Back up to last unexplored edge when you reach a dead
end, then go as far you can

Naturally implemented using recursive calls or a stack

19 / 26



DFS(v) – Recursive version

for all nodes v , v .dfs# = −1 (“undiscovered”)
dfscounter = 0

DFS(v):

v .dfs# =dfscounter++
for all edge (v , x) do

if x .dfs# = −1 then
DFS(x)

else
(code for back edges, etc.)

end if
Mark v “completed”

end for

20 / 26



DFS(v) - explicit stack

Initialize all vertices to “undiscovered”
Mark v “discovered”
Push (v , 1) onto stack
while stack not empty do

(u, i) = pop(stack)
while i ≤ deg(u) do

x ← i th vertex on u’s edge list
if x undiscovered then

mark x “discovered”
push(u, i + 1)
u ← x
i ← 1

end if
end while

end while

21 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



DFS(A) example

22 / 26



Properties of (Undirected) DFS(v)

Like BFS(v):

DFS(v) visits x if and only if there is a path in G from v
to x (through previously unvisited vertices)
Edges into then-undiscovered vertices define a tree – the
”depth first spanning tree” of G

Unlike the BFS tree:

the DF spanning tree isn’t minimum depth
its levels don’t reflect min distance from the root
non-tree edges never join vertices on the same or
adjacent levels

BUT . . .

23 / 26



Non-tree edges

All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

No cross edges!

24 / 26



Why fuss about trees (again)?

As with BFS, DFS has found a tree in the graph s.t.
non-tree edges are “simple”–only descendant/ancestor

25 / 26



A simple problem on trees

Given: tree T, a value L(v) defined for every vertex v in T

Goal: find M(v), the min value of L(v) anywhere in the
subtree rooted at v (including v itself).

How? Depth first search, using:

M(v) =

{
L(v) if v is a leaf

min(L(v), minw∈children(v)M(w)) else

26 / 26


	BFS
	Bipartite Graphs

	DAGs & Topological Ordering
	DFS

