Graph Algorithms

Imran Rashid

University of Washington

Jan 16, 2008

Lecture Outline

BFS
m Bipartite Graphs

DAGs & Topological Ordering

DFS

Lecture Outline

BFS
m Bipartite Graphs

Bipartite Graphs

m Def. An undirected graph G = (V, E) is bipartite if the
nodes can be colored red or blue such that every edge has
one red and one blue end.

m Applications.

m Stable marriage: men = red, women = blue
m Scheduling: machines = red, jobs = blue

Testing Bipartiteness

m Testing bipartiteness. Given a graph G, is it bipartite?
m Many graph problems become:
B easier if the underlying graph is bipartite (matching)
m tractable if the underlying graph is bipartite
(independent set)
m Before attempting to design an algorithm, we need to
understand structure of bipartite graphs.

An Obstruction to Bipartiteness

Lemma

If a graph G is bipartite, it cannot contain an odd length cycle.

Proof.

Impossible to 2-color the odd cycle, let alone G.]

BFS & Bipartite Graphs

Lemma

Let G be a connected graph, and let Ly, ..., L, be the layers
produced by BFS(s). Exactly one of the following holds.

No edge joins nodes of the same layer, and G is bipartite.

An edge joins nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

L L. L L L. L

case 1 case 2

BFS & Bipartite Graphs

Lemma

Let G be a connected graph, and let Ly, ..., L, be the layers
produced by BFS(s). Exactly one of the following holds.

No edge joins nodes of the same layer, and G is bipartite.

An edge joins nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

(1)
m Suppose no edge joins two nodes in the same layer.
m So all edges join nodes on adjacent levels (prop of BFS).

m Bipartition: red = odd levels, blue = even levels.
’_‘ 7/26

BFS & Bipartite Graphs

Lemma

Let G be a connected graph, and let Ly, ..., L, be the layers
produced by BFS(s). Exactly one of the following holds.

No edge joins nodes of the same layer, and G is bipartite.

An edge joins nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Proof.

(2)Suppose (x,y) is an edge & x,y in same level L;. Let z =
their lowest common ancestor in BFS tree. Let L; be level
containing z. Consider cycle that takes edge from x to y, then
tree from y to z, then tree from z to x. Its length is

1+ 2(j — i), which is odd. O

7/26

Obstruction to Bipartiteness

Corollary

A graph G is bipartite iff it contains no odd length cycle.

Lecture Outline

DAGs & Topological Ordering

Precedence Constraints

m Precedence constraints. Edge (v;, v;) means task v; must
occur before v;.
m Applications
m Course prerequisite graph: course v; must be taken
before v;
m Compilation: must compile module v; before v;
m Pipeline of computing jobs: output of job v; is part of
input to job v;
m Manufacturing or assembly: sand it before you paint it

10/26

Directed Acyclic Graphs

m Def. A DAG is a directed acyclic graph, i.e., one that
contains no directed cycles.

m Def. A topological order of a directed graph G = (V, E)
is an ordering of its nodes as vy, v», ..., v, so that for
every edge (v;, v;) we have i < j.

DAG

11/26

Topological Order = DAG

If G has a topological order, then G is a DAG.

m Suppose that G has a topological order vy, ..., v, and that G also has a
directed cycle C.

m Let v; be the lowest-indexed node in C, and let v; be the node just before v;;
thus (v;, v;) is an edge. By our choice of i, we have i < j.

m But, since (v}, v;) is an edge and vi, ..., v, is a topological order, we must have
j < i, a contradiction.

O

the directed cycle C

@OWO@

the supposed topological order: v, ..., v

n

12/26

DAG =- Topological Order ?

Lemma

If G has a topological order, then G is a DAG.

m Q. Does every DAG have a topological ordering?
m Q. If so, how do we compute one?

13/26

DAGs have “source”

If G is a DAG, then G has a node with no incoming edges.

Proof.

m Suppose that G is a DAG and every node has at least one incoming edge. Let's
see what happens.

m Pick any node v, and begin following edges backward from v. Since v has at
least one incoming edge (u, v) we can walk backward to u.

m Then, since u has at least one incoming edge (x, u), we can walk backward to x.
m Repeat until we visit a node, say w, twice.

m Let C be the sequence of nodes encountered between successive visits to w. C
is a cycle.

O

14 /26

DAG =- Topological ordering

Lemma

If G is a DAG, then G has a topological ordering.

By Induction on n, number of nodes
m Base case: true if n =1.
m Given DAG on n > 1 nodes, find a node v with no incoming edges.

m G — {v} is a DAG, since deleting v cannot create cycles. By inductive
hypothesis, G — {v} has a topological ordering.

m Place v first in topological ordering; then append nodes of G — {v} in
topological order. This is valid since v has no incoming edges.

15/26

Topological Ordering Algorithm: Example

16 /26

Topological Ordering Algorithm: Example

16 /26

Topological Ordering Algorithm: Example

16 /26

Topological Ordering Algorithm: Example

16 /26

Topological Ordering Algorithm: Example

16 /26

Topological Ordering Algorithm: Example

16 /26

Topological Ordering Algorithm: Example

16 /26

Topological Sorting Algorithm

count[w] < (remaining) number of incoming edges to w
S « set of (remaining) nodes with no incoming edges
while S not empty do
Remove some v from S
make v next in topological order > O(1) per node
for all edges from v to some w do > O(1) per edge
decrement count|w]
if countjw] =0 then add w to S
end if
end for
end while

m running time O(m + n)
17 /26

Lecture Outline

DFS

18/26

Depth-First Search

m Follow the first path you find as far as you can go

m Back up to last unexplored edge when you reach a dead
end, then go as far you can

m Naturally implemented using recursive calls or a stack

19/26

DFS(v) — Recursive version

m for all nodes v, v.dfs# = —1 (“undiscovered”)
m dfscounter = 0

DFS(v):
v.dfs# =dfscounter++
for all edge (v, x) do
if x.dfs# = —1 then
DFS(x)
else
(code for back edges, etc.)
end if
Mark v “completed”
end for

20/26

DFS(v) - explicit stack

Initialize all vertices to “undiscovered”
Mark v “discovered”
Push (v, 1) onto stack
while stack not empty do
(u, i) = pop(stack)
while i < deg(u) do
x « ith vertex on u's edge list
if x undiscovered then
mark x “discovered”
push(u, i+ 1)
U<+ X
i1
end if
end while 21/26

DFS(A) example

Call Stack
(Edge list):

ABJ)

22/26

DFS(A) example

Call Stack:
(Edge list)

A BJ)
B(AC.J)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BY)

B (KZ.))
C(BD,GH)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (B.J)
B(X2.J)
CBP.GH)
D(C.E.F)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (B.J)

B (X2.J)
CBP.GH)
D(ZEF)

E (D.F)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (B.J)

B (X2.J)
CBP.GH)
D(ZEF)
E@F)

F (D.E,G)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZJ)
CBPGH)
D(ZEF)
E@F)

F(DEZ)
G(CF)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZJ)
CBPGH)
D(ZEF)
E@F)
F(DEZ)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZJ)
CBPGH)
D(ZEF)
E@F)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZJ)
CBPGH)
DZEP)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (B.J)
B(XZJ)
CBPGH)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZJ)
CEBEH)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (B.J)
B(X2.J)
CBBEH
H(C,1.J)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)

B (X2.J)

C (B2 H)
H(Z JJ)

I (H)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZJ)
CBB.EH
H(Z JJ)

I (i

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZJ)
CBB.EH
H(ZXJ)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (B.J)

B (X2.J)
CBB.E M
H(Z ¥4

J (ABHKL)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (B.J)

B (X2.J)
CBB.E M
H(Z ¥4

J (KBHKL)
K (L)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (B.J)

B(XZJ)

CBB.E M
H(Z ¥4

J (/X BIHKL)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZ.J)
CEPEH
H(Z X5

J (HBHXL)
K (WY

L (JA)
ML)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)

B(XZ.J)

C(B’Mﬁ.b'f)
H{(Z ¥

J (/X BIHKL)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZ.J)
CEPEH
H(Z X5

J (HBHKL)
KW

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZJ)
CBB.E M
H(Z ¥4

J HBHKL)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZ.J)
CEPEH
H(Z X5

J HBHKY

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZ.J)
CEPEH
H(Z X

22/26

DFS(A) example

Call Stack:
(Edge list)

A (BJ)
B(XZJ)
CEBBEH

22/26

DFS(A) example

Call Stack:
(Edge list)

A (B.J)
B(XZJ)

22/26

DFS(A) example

Call Stack:
(Edge list)

A (B.J)
B(XZM

22/26

DFS(A) example

Call Stack:
(Edge list)

ABJ)

22/26

DFS(A) example

Call Stack:
(Edge list)

A B

22/26

Properties of (Undirected) DFS(v)

m Like BFS(v):
m DFS(v) visits x if and only if there is a path in G from v
to x (through previously unvisited vertices)
m Edges into then-undiscovered vertices define a tree — the
"depth first spanning tree” of G
m Unlike the BFS tree:
m the DF spanning tree isn't minimum depth
m its levels don’t reflect min distance from the root

B non-tree edges never join vertices on the same or
adjacent levels

m BUT ...

23 /26

Non-tree edges

m All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

m No cross edges!

24 /26

Why fuss about trees (again)?

m As with BFS, DFS has found a tree in the graph s.t.
non-tree edges are “simple”—only descendant/ancestor

25 /26

A simple problem on trees

m Given: tree T, a value L(v) defined for every vertex v in T

m Goal: find M(v), the min value of L(v) anywhere in the
subtree rooted at v (including v itself).

m How? Depth first search, using:

M) L(v) if vis a leaf
V =
min(L(v), minycchiidren(yM(w)) else

26 /26

	BFS
	Bipartite Graphs

	DAGs & Topological Ordering
	DFS

