Graph Algorithms

Imran Rashid

University of Washington

Jan 11, 2008

Lecture Outline

Graph Basics

Breadth-First Search
m Breadth-First Search
m BFS Application: Connected Components

Objects & Relationships

m The Kevin Bacon Game:

m Actors
m Two are related if they've been in a movie together

m Exam Scheduling:

m Classes
m Two are related if they have students in common

m Traveling Salesperson Problem:
m Cities
m Two are related if can travel directly between them

m An extremely important formalism for representing
(binary) relationships

m Objects: “vertices”, aka “nodes”
m Relationships between pairs: “edges”, aka “arcs”

m Formally, a graph G = (V, E) is a pair of sets, V the
vertices and E the edges

Undirected Graph G = (V,E)

Graphs don't live in Flatland

m Geometrical
drawing is
mentally
convenient...

Directed Graph G = (V,E)

Specifying undirected graphs as input

m What are the vertices?

m Explicitly list them

m {“A", 77,137, M4}
m What are the edges?

m Either, set of edges

= {{A3}, {74}, {43}, {4A}}
m Or, (symmetric) adjacency
matrix

A
AlO
710
311
411

= O O O~
= O O W
O = =N

Specifying directed graphs as input

m What are the vertices?
m Explicitly list them
m {“A", T, 130, M4}
m What are the edges?
m Either, set of directed edges:

{(A4), (47), (43), (4A), A7 3 4
(A3)} A0 0 11

m Or, (nonsymmetric) adjacency 71lo 0o 0 o
matrix from 210 0 0 0
411 1 10

Vertices vs # Edges

m Let G be an undirected graph with n vertices and m
edges. How are n and m related?
m Since

m every edge connects two different vertices (no loops),
and no two edges connect the same two vertices (no
multi-edges),

10 /24

Sparse, Dense: More Cool Graph Lingo

m A graph is called sparse if m < n?, otherwise it is dense

m Q: which is a better run time, O(n+ m) or O(n?)?

11/24

Adjacency Matrix Representation

m Vertexset V =vy,...,v,
m Adjacency Matrix A

m Ali,j]=11iff (vj,v;) € E A7 3 4

m Space is n? bits Al0o 0 1 1

m Advantages: 710 0 0 1
3|1 0 0 1

411 1 10

m Disadvantages:

12/24

Ajacency List Representation

m Space:

m Advantages: Vy %

m Disadvantages

13 /24

Representing Graph G=(V,E) n vertices, m edges

m Adjacency List:
m O(n+m) words
m Back- and cross pointers
more work to build, but allow
easier traversal and deletion
of edges, if needed, (don't
bother if not)

14 /24

Graph Traversal

m Learn the basic structure of a graph

m “Walk,” via edges, from a fixed starting vertex s to all
vertices reachable from s
m Being orderly helps. Two common ways:

m Breadth-First Search
m Depth-First Search

15 /24

Breadth-First Search

m Idea: Explore from start s, layer by layer
m BFS algorithm.
] Lo = {S}

m Theorem. For each i, L; consists of all nodes at distance
(i.e., min path length) exactly i from s.

m Corollary: There is a path from s to t iff t appears in
some layer.

16 /24

Graph Traversal: Implementation

m Learn the basic structure of a graph

m “Walk,” via edges, from a fixed starting vertex s to all
vertices reachable from s

m Three states of vertices

17 /24

Algorithm: BFS(s)

Initialize: All vertices marked “undiscovered”
Mark s discovered
queue — {s}
while queue not empty do
u < removeFront(queue)
for all edge (u, x) do
if x is "undiscovered” then
Mark x “discovered”
Append x on queue
end if
Mark u “fully explored”
end for
end while

18 /24

e 28

19/24

BFS analysis

m Each edge is explored once from each end-point
m Each vertex is discovered by following a different edge
m Total cost O(m), m = # of edges

20 /24

Properties of (Undirected) BFS(v)

21 /24

Why fuss about trees?

m Trees are simpler than graphs

m Ditto for algorithms on trees vs algs on graphs

22/24

Graph Search Application: Connected Components

m Want to answer questions of the form:
m given vertices u and v, is there a path from u to v?
m Idea: create array A such that
m Alu] = smallest numbered vertex that is connected to u.

23 /24

Algorithm: Find Connected Components

Iniitalize all nodes “undiscovered”
for v=1to ndo
if v # “fully-explored” then
BFS(v), setting A[u] < v for each u found
> (This will mark u “discovered” / “fully-explored”)
end if
end for

m Total cost: O(n+m)

m each edge is touched a constant number of times (twice)
m works also with DFS

24 /24

	Graph Basics
	Breadth-First Search
	Breadth-First Search
	BFS Application: Connected Components

