Graph Algorithms

Imran Rashid

University of Washington

Jan 11, 2008

Lecture Outline

- 1 Graph Basics
- 2 Breadth-First Search
 - Breadth-First Search
 - BFS Application: Connected Components

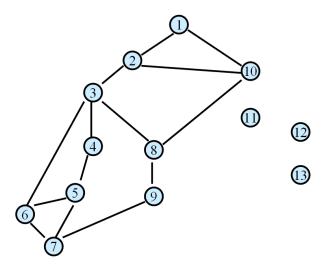
Objects & Relationships

- The Kevin Bacon Game:
 - Actors
 - Two are related if they've been in a movie together
- Exam Scheduling:
 - Classes
 - Two are related if they have students in common
- Traveling Salesperson Problem:
 - Cities
 - Two are related if can travel directly between them

Graphs

- An extremely important formalism for representing (binary) relationships
- Objects: "vertices", aka "nodes"
- Relationships between pairs: "edges", aka "arcs"
- $lue{}$ Formally, a graph $G=(V,\,E)$ is a pair of sets, V the vertices and E the edges

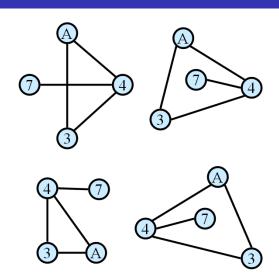
Undirected Graph G = (V,E)



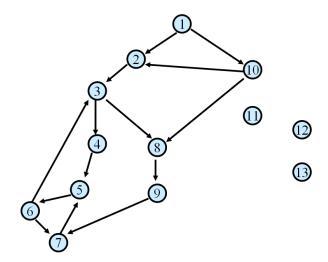
.

Graphs don't live in Flatland

 Geometrical drawing is mentally convenient...



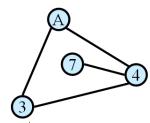
Directed Graph G = (V,E)



13

Specifying undirected graphs as input

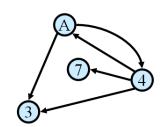
- What are the vertices?
 - Explicitly list them
 - { "A", "7", "3", "4" }
- What are the edges?
 - Either, set of edges
 - {{A,3}, {7,4}, {4,3}, {4,A}}
 - Or, (symmetric) adjacency matrix



	Α			4
A 7	0	0	1	1
	0	0	0	1
3	1	0	0	1
4	1	1	1	0

Specifying directed graphs as input

- What are the vertices?
 - Explicitly list them
 - { "A", "7", "3", "4" }
- What are the edges?
 - Either, set of directed edges: {(A,4), (4,7), (4,3), (4,A), (A,3)}
 - Or, (nonsymmetric) adjacency matrix



		to			
		Α	7	3	4
	Α	0	0	1	1
from	7	0	0	1 0 0	0
110111	3	0	0	0	0
	4	1	1	1	0

Vertices vs # Edges

- Let G be an undirected graph with n vertices and m edges. How are n and m related?
- Since
 - every edge connects two different vertices (no loops), and no two edges connect the same two vertices (no multi-edges),

Sparse, Dense: More Cool Graph Lingo

■ A graph is called sparse if $m \ll n^2$, otherwise it is dense

Q: which is a better run time, O(n+m) or $O(n^2)$?

Adjacency Matrix Representation

- Vertex set $V = v_1, \dots, v_n$
- Adjacency Matrix A

$$\bullet$$
 $A[i,j] = 1$ iff $(v_i, v_i) \in E$

- Space is n^2 bits
- Advantages:

	Α	7	3	4
Α	0	0	1	1
A 7 3 4	0	0	0	1
3	1	0	0	1
4	0 0 1 1	1	1	0

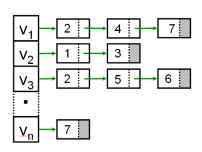
Disadvantages:

Ajacency List Representation

■ Space:

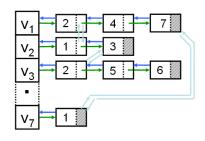
Advantages:

Disadvantages



Representing Graph G=(V,E) n vertices, m edges

- Adjacency List:
 - O(n+m) words
- Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, if needed, (don't bother if not)



Graph Traversal

- Learn the basic structure of a graph
- "Walk," via edges, from a fixed starting vertex s to all vertices reachable from s
- Being orderly helps. Two common ways:
 - Breadth-First Search
 - Depth-First Search

Breadth-First Search

- Idea: Explore from start s, layer by layer
- BFS algorithm.
 - $L_0 = \{s\}.$

- Theorem. For each i, L_i consists of all nodes at distance (i.e., min path length) exactly i from s.
- Corollary: There is a path from *s* to *t* iff *t* appears in some layer.

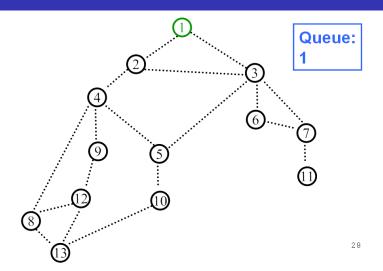
Graph Traversal: Implementation

- Learn the basic structure of a graph
- "Walk," via edges, from a fixed starting vertex s to all vertices reachable from s
- Three states of vertices

Algorithm: BFS(s)

```
Initialize: All vertices marked "undiscovered"
Mark s discovered
queue \leftarrow \{s\}
while queue not empty do
    u \leftarrow removeFront(queue)
   for all edge (u, x) do
       if x is "undiscovered" then
           Mark x "discovered"
           Append x on queue
       end if
       Mark u "fully explored"
   end for
end while
```

BFS in action



BFS analysis

- Each edge is explored once from each end-point
- Each vertex is discovered by following a different edge
- Total cost O(m), m = # of edges

Properties of (Undirected) BFS(v)

Why fuss about trees?

- Trees are simpler than graphs
- Ditto for algorithms on trees vs algs on graphs

Graph Search Application: Connected Components

- Want to answer questions of the form:
 - \blacksquare given vertices u and v, is there a path from u to v?
- Idea: create array A such that
 - A[u] = smallest numbered vertex that is connected to u.

Algorithm: Find Connected Components

```
Iniitalize all nodes "undiscovered" for v=1 to n do if v \neq "fully-explored" then BFS(v), setting A[u] \leftarrow v for each u found \triangleright (This will mark u "discovered" / "fully-explored") end if end for
```

- Total cost: O(n+m)
 - each edge is touched a constant number of times (twice)
 - works also with DFS