Graph Algorithms

Imran Rashid

University of Washington

Jan 11, 2008

1 / 24

K ロ > K @ > K 할 > K 할 > 1 할 : 9 Q Q*

Lecture Outline

1 [Graph Basics](#page-3-0)

K ロ > K @ > K 할 > K 할 > 1 할 : 9 Q Q* 2 / 24

Lecture Outline

1 [Graph Basics](#page-3-0)

2 [Breadth-First Search](#page-22-0)

- [Breadth-First Search](#page-23-0)
- **[BFS Application: Connected Components](#page-37-0)**

2 / 24

 Ω

イロト 不優 ト 不差 ト 不差 トー 連一

Objects & Relationships

■ The Kevin Bacon Game:

Actors

■ Two are related if they've been in a movie together

 \blacksquare Exam Scheduling:

■ Classes

■ Two are related if they have students in common

■ Traveling Salesperson Problem:

■ Cities

■ Two are related if can travel directly between them

Graphs

- An extremely important formalism for representing (binary) relationships
- Objects: "vertices", aka "nodes"
- Relationships between pairs: "edges", aka "arcs"
- Formally, a graph $G = (V, E)$ is a pair of sets, V the vertices and E the edges

4 / 24

K ロ > K @ > K 등 > K 등 > … 등

Graphs don't live in Flatland

- Geometrical drawing is mentally convenient...
- \blacksquare ... but mathematically irrelevant
- 4 drawings, 1 graph.

- 로 299 7 / 24

メロメ メ御き メミメ メミメ 性 299 7 / 24

性 299 7 / 24

Specifying undirected graphs as input

- What are the vertices?
	- \blacksquare Explicitly list them
	- \blacksquare { "A", "7", "3", "4" }
- What are the edges?
	- Either, set of edges
	- \blacksquare {{A,3}, {7,4}, {4,3}, {4,A}}
	- Or, (symmetric) adjacency matrix

Specifying directed graphs as input

■ What are the vertices? \blacksquare Explicitly list them \blacksquare { "A", "7", "3", "4" } ■ What are the edges? Either, set of directed edges: $\{(A,4), (4,7), (4,3), (4,A),$ $(A,3)$ } ■ Or, (nonsymmetric) adjacency matrix to A 7 3 4 from A 0 0 1 1 7 0 0 0 0 3 0 0 0 0 4 1 1 1 0

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

$#$ Vertices vs $#$ Edges

- Let G be an undirected graph with n vertices and m edges. How are n and m related?
- Since
	- every edge connects two different vertices (no loops), and no two edges connect the same two vertices (no multi-edges),
- \blacksquare it must be true that:

$$
0\leq m\leq \frac{n(n-1)}{2}=O(n^2)
$$

10 / 24

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

Sparse, Dense: More Cool Graph Lingo

A graph is called sparse if $m \ll n^2$, otherwise it is \textrm{dense} Boundary is somewhat fuzzy; $O(n)$ edges is certainly sparse, $\Omega(n^2)$ edges is dense.

Sparse graphs are common in practice

■ E.g., all planar graphs are sparse $(m \leq 3n-6,$ for $n \geq 3)$

11 / 24

K ロ X K @ X K 등 X K 등 X → 등

- Q: which is a better run time, $O(n + m)$ or $O(n^2)$?
- A: $O(n + m) = O(n^2)$, but $n + m$ usually way better!

Adjacency Matrix Representation

- **Vertex set** $V = v_1, \ldots, v_n$
- Adjacency Matrix A
	- $\mathcal{A}[i,j]=1$ iff $(\mathsf{v}_i,\mathsf{v}_j)\in\mathit{E}$
	- Space is n^2 bits
- Advantages:
	- $O(1)$ test for presence or absence of edges.
- Disadvantages:
	- \blacksquare inefficient for sparse graphs, both in storage and access

Ajacency List Representation

Space:

- \blacksquare n vertices, m edges
- $O(n + m)$ words
- **Advantages:**
	- Compact for sparse graphs
	- Easily see all edges
- **Disadvantages**
	- **More complex data** structure
	- no $O(1)$ edge test

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

13 / 24

 Ω

画

Representing Graph $G=(V,E)$ n vertices, m edges

- Adjacency List:
	- $O(n+m)$ words
- Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, if needed, (don't bother if not)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Graph Traversal

- \blacksquare Learn the basic structure of a graph
- **Notally** "Walk," via edges, from a fixed starting vertex s to all vertices reachable from s

15 / 24

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

- Being orderly helps. Two common ways:
	- **Breadth-First Search**
	- Depth-First Search

Breadth-First Search

- Idea: Explore from start s, layer by layer
- BFS algorithm.

$$
\blacksquare L_0 = \{s\}.
$$

- $L_1 =$ all neighbors of L_0 .
- $L_2 =$ all nodes not in L_0 or L_1 , and having an edge to a node in L_1 .
- $L_{i+1} =$ all nodes not in earlier layers, and having an edge to a node in L_i .

Theorem. For each i, L_i consists of all nodes at distance (i.e., min path length) exactly *i* from s_{max} s_{max} 최시 (법) Corollary: There is a pa[t](#page-22-0)h f[r](#page-37-0)om s to t i[ff](#page-24-0) t [a](#page-36-0)[p](#page-22-0)p[e](#page-23-0)ars [i](#page-22-0)[n](#page-38-0) 16 / 24

Graph Traversal: Implementation

- \blacksquare Learn the basic structure of a graph
- **Notally** "Walk," via edges, from a fixed starting vertex s to all vertices reachable from s

17 / 24

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

- Three states of vertices
	- undiscovered
	- discovered
	- **fully-explored**

Algorithm: BFS(s)

```
Initialize: All vertices marked "undiscovered"
Mark s discovered
queue \leftarrow \{s\}while queue not empty do
    u \leftarrow removeFront(queue)
   for all edge (u, x) do
       if x is "undiscovered" then
           Mark x "discovered"
           Append x on queue
       end if
       Mark u "fully explored"
   end for
end while
```


- Each edge is explored once from each end-point
- Each vertex is discovered by following a different edge $\mathcal{L}_{\mathcal{A}}$

20 / 24

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

T Total cost $O(m)$, $m = #$ of edges

Properties of (Undirected) BFS(v)

- **BFS(v)** visits x if and only if there is a path in G from v to x.
- Edges into then-undiscovered vertices define a tree $-$ the "breadth first spanning tree" of G
- **E** Level *i* in this tree are exactly those vertices u such that the shortest path (in G , not just the tree) from the root v is of length i .
- **All** non-tree edges join vertices on the same or adjacent levels

Why fuss about trees?

- \blacksquare Trees are simpler than graphs
- Ditto for algorithms on trees vs algs on graphs
- So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
- E.g., BFS finds a tree s.t. level-jumps are minimized
- ■ DFS (next) finds a different tree, but it also has interesting structure

Graph Search Application: Connected Components

- Want to answer questions of the form:
	- given vertices u and v, is there a path from u to v ?
- **If** Idea: create array A such that
	- \blacksquare A[u] = smallest numbered vertex that is connected to u.

23 / 24

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ → 글 → 9 Q Q

Question reduces to whether $A[u] = A[v]$?

Algorithm: Find Connected Components

Iniitalize all nodes "undiscovered" for $v = 1$ to n do if $v \neq$ "fully-explored" then $BFS(v)$, setting $A[u] \leftarrow v$ for each u found \triangleright (This will mark u "discovered"/"fully-explored") end if end for

T Total cost: $O(n+m)$

each edge is touched a constant number of times (twice)

works also with DFS