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Objects & Relationships

The Kevin Bacon Game:

Actors
Two are related if they’ve been in a movie together

Exam Scheduling:

Classes
Two are related if they have students in common

Traveling Salesperson Problem:

Cities
Two are related if can travel directly between them
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Graphs

An extremely important formalism for representing
(binary) relationships

Objects: “vertices”, aka “nodes”

Relationships between pairs: “edges”, aka “arcs”

Formally, a graph G = (V, E) is a pair of sets, V the
vertices and E the edges
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Undirected Graph G = (V,E)
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Graphs don’t live in Flatland

Geometrical
drawing is
mentally
convenient...

... but
mathematically
irrelevant

4 drawings, 1
graph.
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Directed Graph G = (V,E)

7 / 24



Directed Graph G = (V,E)

7 / 24



Directed Graph G = (V,E)

7 / 24



Directed Graph G = (V,E)

7 / 24



Directed Graph G = (V,E)

7 / 24



Specifying undirected graphs as input

What are the vertices?

Explicitly list them
{“A”, “7”, “3”, “4”}

What are the edges?

Either, set of edges
{{A,3}, {7,4}, {4,3}, {4,A}}
Or, (symmetric) adjacency
matrix

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0
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Specifying directed graphs as input

What are the vertices?

Explicitly list them
{“A”, “7”, “3”, “4”}

What are the edges?

Either, set of directed edges:
{(A,4), (4,7), (4,3), (4,A),
(A,3)}
Or, (nonsymmetric) adjacency
matrix

to
A 7 3 4

from

A 0 0 1 1
7 0 0 0 0
3 0 0 0 0
4 1 1 1 0
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# Vertices vs # Edges

Let G be an undirected graph with n vertices and m
edges. How are n and m related?

Since

every edge connects two different vertices (no loops),
and no two edges connect the same two vertices (no
multi-edges),

it must be true that:

0 ≤ m ≤ n(n − 1)

2
= O(n2)
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Sparse, Dense: More Cool Graph Lingo

A graph is called sparse if m� n2, otherwise it is dense

Boundary is somewhat fuzzy; O(n) edges is certainly
sparse, Ω(n2) edges is dense.

Sparse graphs are common in practice

E.g., all planar graphs are sparse (m ≤ 3n− 6, for n ≥ 3)

Q: which is a better run time, O(n + m) or O(n2)?

A: O(n + m) = O(n2), but n + m usually way better!
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Adjacency Matrix Representation

Vertex set V = v1, . . . , vn

Adjacency Matrix A

A[i , j ] = 1 iff (vi , vj) ∈ E
Space is n2 bits

Advantages:

O(1) test for presence or absence
of edges.

Disadvantages:

inefficient for sparse graphs, both
in storage and access

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0
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Ajacency List Representation

Space:

n vertices, m edges
O(n + m) words

Advantages:

Compact for sparse graphs
Easily see all edges

Disadvantages

More complex data
structure
no O(1) edge test
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Representing Graph G=(V,E) n vertices, m edges

Adjacency List:

O(n+m) words

Back- and cross pointers
more work to build, but allow
easier traversal and deletion
of edges, if needed, (don’t
bother if not)
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Graph Traversal

Learn the basic structure of a graph

“Walk,” via edges, from a fixed starting vertex s to all
vertices reachable from s

Being orderly helps. Two common ways:

Breadth-First Search
Depth-First Search
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Breadth-First Search

Idea: Explore from start s, layer by layer
BFS algorithm.

L0 = {s}.
L1 = all neighbors of L0.
L2 = all nodes not in L0 or L1, and having an edge to a
node in L1.
Li+1 = all nodes not in earlier layers, and having an edge
to a node in Li .

Theorem. For each i , Li consists of all nodes at distance
(i.e., min path length) exactly i from s.
Corollary: There is a path from s to t iff t appears in
some layer.
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Graph Traversal: Implementation

Learn the basic structure of a graph

“Walk,” via edges, from a fixed starting vertex s to all
vertices reachable from s

Three states of vertices

undiscovered
discovered
fully-explored
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Algorithm: BFS(s)

Initialize: All vertices marked “undiscovered”
Mark s discovered
queue ← {s}
while queue not empty do

u ← removeFront(queue)
for all edge (u, x) do

if x is “undiscovered” then
Mark x “discovered”
Append x on queue

end if
Mark u “fully explored”

end for
end while
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BFS in action
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BFS analysis

Each edge is explored once from each end-point

Each vertex is discovered by following a different edge

Total cost O(m), m = # of edges
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Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from v
to x .

Edges into then-undiscovered vertices define a tree – the
”breadth first spanning tree” of G

Level i in this tree are exactly those vertices u such that
the shortest path (in G , not just the tree) from the root
v is of length i .

All non-tree edges join vertices on the same or adjacent
levels
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Why fuss about trees?

Trees are simpler than graphs

Ditto for algorithms on trees vs algs on graphs

So, this is often a good way to approach a graph
problem: find a “nice” tree in the graph, i.e., one such
that non-tree edges have some simplifying structure

E.g., BFS finds a tree s.t. level-jumps are minimized

DFS (next) finds a different tree, but it also has
interesting structure
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Graph Search Application: Connected Components

Want to answer questions of the form:

given vertices u and v , is there a path from u to v?

Idea: create array A such that

A[u] = smallest numbered vertex that is connected to u.
Question reduces to whether A[u] = A[v ]?

23 / 24



Algorithm: Find Connected Components

Iniitalize all nodes “undiscovered”
for v = 1 to n do

if v 6= “fully-explored” then
BFS(v), setting A[u]← v for each u found

. (This will mark u “discovered”/“fully-explored”)
end if

end for

Total cost: O(n+m)

each edge is touched a constant number of times (twice)
works also with DFS
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