Graph Algorithms

Imran Rashid

University of Washington

Jan 11, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Lecture Outline

Lecture Outline

1 Graph Basics

2 Breadth-First Search

- Breadth-First Search
- BFS Application: Connected Components

Objects & Relationships

The Kevin Bacon Game:

Actors

Two are related if they've been in a movie together

Exam Scheduling:

Classes

Two are related if they have students in common

Traveling Salesperson Problem:

Cities

Two are related if can travel directly between them

Graphs

- An extremely important formalism for representing (binary) relationships
- Objects: "vertices", aka "nodes"
- Relationships between pairs: "edges", aka "arcs"
- Formally, a graph G = (V, E) is a pair of sets, V the vertices and E the edges

Graphs don't live in Flatland

- Geometrical drawing is mentally convenient...
- ... but mathematically irrelevant
- 4 drawings, 1 graph.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Specifying undirected graphs as input

- What are the vertices?
 - Explicitly list them
 - { "A", "7", "3", "4" }
- What are the edges?
 - Either, set of edges
 - $\blacksquare \{\{A,3\}, \{7,4\}, \{4,3\}, \{4,A\}\}$
 - Or, (symmetric) adjacency matrix

(a)

Specifying directed graphs as input

- What are the vertices?
 - Explicitly list them
 - { "A", "7", "3", "4" }
- What are the edges?
 - Either, set of directed edges: {(A,4), (4,7), (4,3), (4,A), (A,3)}
 - Or, (nonsymmetric) adjacency matrix

Vertices vs # Edges

- Let G be an undirected graph with n vertices and m edges. How are n and m related?
- Since
 - every edge connects two different vertices (no loops), and no two edges connect the same two vertices (no multi-edges),
- it must be true that:

$$0\leq m\leq \frac{n(n-1)}{2}=O(n^2)$$

Sparse, Dense: More Cool Graph Lingo

- A graph is called sparse if $m \ll n^2$, otherwise it is dense
 - Boundary is somewhat fuzzy; O(n) edges is certainly sparse, Ω(n²) edges is dense.
- Sparse graphs are common in practice

• E.g., all planar graphs are sparse $(m \le 3n - 6, \text{ for } n \ge 3)$

- Q: which is a better run time, O(n + m) or $O(n^2)$?
- A: $O(n + m) = O(n^2)$, but n + m usually way better!

Adjacency Matrix Representation

- Vertex set $V = v_1, \ldots, v_n$
- Adjacency Matrix A
 - A[i,j] = 1 iff $(v_i, v_j) \in E$
 - Space is n^2 bits
- Advantages:
 - O(1) test for presence or absence of edges.
- Disadvantages:
 - inefficient for sparse graphs, both in storage and access

	A	7	3	4
А	0	0	1	1
7	0	0	0	1
3	1	0	0	1
4	1	1	1	0

Ajacency List Representation

Space:

- n vertices, m edges
- O(n+m) words
- Advantages:
 - Compact for sparse graphs
 - Easily see all edges
- Disadvantages
 - More complex data structure
 - no O(1) edge test

Representing Graph G=(V,E) n vertices, m edges

- Adjacency List:
 - O(n+m) words
- Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, if needed, (don't bother if not)

イロト イポト イヨト イヨト

Graph Traversal

- Learn the basic structure of a graph
- "Walk," via edges, from a fixed starting vertex s to all vertices reachable from s
- Being orderly helps. Two common ways:
 - Breadth-First Search
 - Depth-First Search

Breadth-First Search

- Idea: Explore from start *s*, layer by layer
- BFS algorithm.

•
$$L_0 = \{s\}.$$

- $L_1 = \text{all neighbors of } L_0$.
- L_2 = all nodes not in L_0 or L_1 , and having an edge to a node in L_1 .
- L_{i+1} = all nodes not in earlier layers, and having an edge to a node in L_i .

Theorem. For each *i*, *L_i* consists of all nodes at distance (i.e., min path length) exactly *i* from *s*.
 Corollary: There is a path from *s* to *t* iff *t* appears in

Graph Traversal: Implementation

- Learn the basic structure of a graph
- "Walk," via edges, from a fixed starting vertex s to all vertices reachable from s
- Three states of vertices
 - undiscovered
 - discovered
 - fully-explored

Algorithm: BFS(s)

```
Initialize: All vertices marked "undiscovered"
Mark s discovered
queue \leftarrow \{s\}
while queue not empty do
    u \leftarrow removeFront(queue)
   for all edge (u, x) do
       if x is "undiscovered" then
           Mark x "discovered"
           Append x on queue
       end if
       Mark u "fully explored"
   end for
end while
```


BFS analysis

- Each edge is explored once from each end-point
- Each vertex is discovered by following a different edge
- Total cost O(m), m = # of edges

Properties of (Undirected) BFS(v)

- BFS(v) visits x if and only if there is a path in G from v to x.
- Edges into then-undiscovered vertices define a tree the "breadth first spanning tree" of G
- Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.
- All non-tree edges join vertices on the same or adjacent levels

Why fuss about trees?

- Trees are simpler than graphs
- Ditto for algorithms on trees vs algs on graphs
- So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
- E.g., BFS finds a tree s.t. level-jumps are minimized
- DFS (next) finds a different tree, but it also has interesting structure

Graph Search Application: Connected Components

- Want to answer questions of the form:
 - given vertices *u* and *v*, is there a path from *u* to *v*?
- Idea: create array A such that
 - A[u] = smallest numbered vertex that is connected to u.

23/24

• Question reduces to whether A[u] = A[v]?

Algorithm: Find Connected Components

Initalize all nodes "undiscovered" for v = 1 to n do if $v \neq$ "fully-explored" then BFS(v), setting $A[u] \leftarrow v$ for each u found \triangleright (This will mark u "discovered" / "fully-explored") end if end for

■ Total cost: O(n+m)

each edge is touched a constant number of times (twice)

works also with DFS