Analysis

Imran Rashid

University of Washington

Jan 9, 2008

Defining Efficiency

- "Runs fast on typical real problem instances"
- Pro:
 - sensible, bottom-line-oriented
- Con:
 - moving target (diff computers, compilers, Moore's law)
 - highly subjective (how fast is "fast"? what's "typical"?)

Efficiency

- Our correct TSP algorithm was incredibly slow
- Basically slow no matter what computer you have
- We want a general theory of "efficiency" that is
 - Simple
 - Objective
 - Relatively independent of changing technology
 - But still predictive "theoretically bad" algorithms should be bad in practice and vice versa (usually)

Measuring efficiency

- Time # of instructions executed in a simple programming language
 - only simple operations (+,*,-,=,if,call,...)
 - each operation takes one time step
 - each memory access takes one time step
 - no fancy stuff (add these two matrices, copy this long string,...) built in; write it/charge for it as above
- No fixed bound on the memory size

We left out things but...

■ Things we've dropped

Complexity analysis

- Problem size n
 - Worst-case complexity: max # steps algorithm takes on any input of size n
 - Best-case complexity: min # steps algorithm takes on any input of size n
 - Average-case complexity: avg # steps algorithm takes on inputs of size n

Pros and cons:

- Best-case
- Average-case

■ Worst-case

Why Worst-Case Analysis?

General Goals

- Characterize growth rate of (worst-case) run time as a function of problem size, up to a constant factor
- Why not try to be more precise?
 - Technological variations (computer, compiler, OS, ...) easily 10x or more
 - Being more precise is a ton of work
 - A key question is "scale up": if I can afford to do it today, how much longer will it take when my business problems are twice as large? (E.g. today: cn^2 , next year: $c(2n)^2 = 4cn^2$: 4 x longer.)

Complexity

■ The complexity of an algorithm associates a number T(n), the worst-case time the algorithm takes, with each problem size n.

O-notation etc

- Given two functions f and $g: N \rightarrow R$
 - f(n) is O(g(n)) iff there is a constant c > 0 so that f(n) is eventually always $\leq c g(n)$
 - f(n) is $\Omega(g(n))$ iff there is a constant c > 0 so that f(n) is eventually always $\geq c g(n)$
 - f(n) is $\Theta(g(n))$ iff there is are constants $c_1, c_2 > 0$ so that eventually always $c_1 \ g(n) \le f(n) \le c_2 \ g(n)$

Examples

$$10n^2 - 16n + 100$$

Properties

Transitivity.

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

- If f = O(h) and g = O(h) then f + g = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and g = O(h) then $f + g = \Theta(h)$.

Asymptotic Bounds for Some Common Functions

Polynomials: $a_0 + a_1 n + \ldots + a_d n_d$ is $\Theta(n^d)$ if $a_d > 0$

- Logarithms: $O(log_a n) = O(log_b n)$ for any constants a, b > 0
- Logarithms: For all x > 0, $log n = O(n^x)$

"One-Way Equalities"

$$2 + 2 \text{ is } 4$$
 $2n^2 + 5n \text{ is } O(n^3)$
 $2 + 2 = 4$ $2n^2 + 5n = O(n^3)$
 $4 = 2 + 2$ $O(n^3) = 2n^2 + 5n$

All dogs are mammals All mammals are dogs

- Bottom line:
 - OK to put big-O in R.H.S. of equality, but not left.
 - (Better, but uncommon, notation: $2n^2 + 5n \in O(n^3)$)

Working with $O-\Omega-\Theta$ notation

■ Claim: For any a, and any b > 0, $(n + a)^b$ is $\Theta(n^b)$

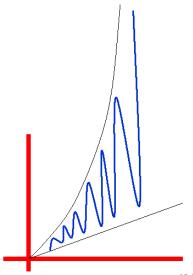
Working with $O-\Omega-\Theta$ notation (2)

■ Claim: For any $a, b > 1, log_a n$ is $\Theta(log_b n)$

Big-Theta, etc. not always "nice"

$$f(x) = \begin{cases} n^2 & \text{if } n \text{ even,} \\ n & \text{else} \end{cases}$$

- $f(n) \neq \Theta(n^a)$ for any a.
- Fortunately, this is rare

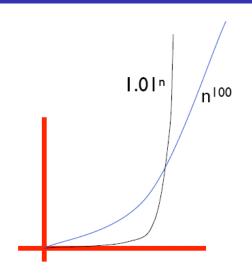


A Possible Misunderstanding?

- We have looked at
 - type of complexity analysis
 - worst-, best-, average-case
 - types of function bounds
 - O, Ω, Θ
- These two considerations are independent of each other
 - one can do any type of function bound with any type of complexity analysis - measuring different things with same yardstick

Asymptotic Bounds for Some Common Functions

Exponentials. For all r > 1 and all d > 0, $n^d = O(r^n)$.



Polynomial time

■ Running time is $O(n^d)$ for some constant d independent of the input size n.

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	n	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Example: Studying Protein Interactions

■ Yeast: $\approx 6k$ proteins

■ Human: $\approx 25k$ proteins

Key Facts

Geek-speak Faux Pas du Jour

- "Any comparison-based sorting algorithm requires at least O(n log n) comparisons."
 - Statement doesn't "type-check."
 - Use Ω for lower bounds.

Summary

- Typical initial goal for algorithm analysis is to find a reasonably tight (i.e., Θ if possible) asymptotic (i.e., O or O) bound on (usually upper bound) worst case running time as a function of problem size
- This is rarely the last word, but often helps separate good algorithms from blatantly poor ones so you can concentrate on the good ones!