
Analysis

Imran Rashid

University of Washington

Jan 9, 2008

1 / 26

Defining Efficiency

“Runs fast on typical real problem instances”

Pro:

sensible, bottom-line-oriented

Con:

moving target (diff computers, compilers, Moore’s law)
highly subjective (how fast is “fast”? what’s “typical”?)

2 / 26

Efficiency

Our correct TSP algorithm was incredibly slow

Basically slow no matter what computer you have

We want a general theory of “efficiency” that is

Simple
Objective
Relatively independent of changing technology
But still predictive - “theoretically bad” algorithms
should be bad in practice and vice versa (usually)

3 / 26

Measuring efficiency

Time # of instructions executed in a simple programming
language

only simple operations (+,*,-,=,if,call,. . .)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long
string,. . .) built in; write it/charge for it as above

No fixed bound on the memory size

4 / 26

We left out things but...

Things we’ve dropped
memory hierarchy

disk, caches, registers have many orders of magnitude
differences in access time

not all instructions take the same time in practice
different computers have different primitive instructions

However,

the RAM model is useful for designing algorithms and
measuring their efficiency
one can usually tune implementations so that the
hierarchy etc. is not a huge factor

5 / 26

Complexity analysis

Problem size n

Worst-case complexity: max # steps algorithm takes on
any input of size n
Best-case complexity: min # steps algorithm takes on
any input of size n
Average-case complexity: avg # steps algorithm takes
on inputs of size n

6 / 26

Pros and cons:

Best-case

unrealistic oversell

Average-case

over what probability distribution? (different people may
have different “average” problems)
analysis often hard

Worst-case

a fast algorithm has a comforting guarantee
maybe too pessimistic

7 / 26

Why Worst-Case Analysis?

Appropriate for time-critical applications, e.g. avionics

Unlike Average-Case, no debate about what the right
definition is

Analysis often easier

Result is often representative of ”typical” problem
instances

Of course there are exceptions. . .

8 / 26

General Goals

Characterize growth rate of (worst-case) run time as a
function of problem size, up to a constant factor

Why not try to be more precise?

Technological variations (computer, compiler, OS, . . .)
easily 10x or more
Being more precise is a ton of work
A key question is “scale up”: if I can afford to do it
today, how much longer will it take when my business
problems are twice as large? (E.g. today: cn2, next year:
c(2n)2 = 4cn2 : 4 x longer.)

9 / 26

Complexity

The complexity of an algorithm associates a number
T(n), the worst-case time the algorithm takes, with each
problem size n.

10 / 26

O-notation etc

Given two functions f and g : N → R

f (n) is O(g(n)) iff there is a constant c > 0 so that
f (n) is eventually always ≤ c g(n)
f (n) is Ω(g(n)) iff there is a constant c > 0 so that f (n)
is eventually always ≥ c g(n)
f (n) is Θ(g(n)) iff there is are constants c1, c2 > 0 so
that eventually always c1 g(n) ≤ f (n) ≤ c2 g(n)

11 / 26

Examples

10n2 − 16n + 100

10n2 − 16n + 100 is O(n2) also O(n3)

10n2 − 16n + 100 ≤ 11n2 for all n > 10

10n2 − 16n + 100 is Ω(n2) also Ω(n)

10n2 − 16n + 100 ≥ 9n2 for all n > 16
Therefore also 10n2 − 16n + 100 is Θ(n2)

10n2 − 16n + 100 is neither O(n) nor Ω(n3)

12 / 26

Properties

Transitivity.

If f = O(g) and g = O(h) then f = O(h).
If f = Ω(g) and g = Ω(h) then f = Ω(h).
If f = Θ(g) and g = Θ(h) then f = Θ(h).

Additivity.

If f = O(h) and g = O(h) then f + g = O(h).
If f = Ω(h) and g = Ω(h) then f + g = Ω(h).
If f = Θ(h) and g = O(h) then f + g = Θ(h).

13 / 26

Asymptotic Bounds for Some Common Functions

Polynomials:
a0 + a1n + . . . + adnd is Θ(nd) if ad > 0

Logarithms:
O(logan) = O(logbn) for any constants a, b > 0

Logarithms:
For all x > 0, logn = O(nx)

14 / 26

“One-Way Equalities”

2 + 2 is 4 2n2 + 5n is O(n3)
2 + 2 = 4 2n2 + 5n = O(n3)
4 = 2 + 2 O(n3) = 2n2 + 5n
All dogs are mammals All mammals are dogs

Bottom line:

OK to put big-O in R.H.S. of equality, but not left.
(Better, but uncommon, notation: 2n2 + 5n ∈ O(n3))

15 / 26

Working with O-Ω-Θ notation

Claim: For any a, and any b > 0, (n + a)b is Θ(nb)

(n + a)b ≤ (2n)b for n ≥ |a|
= 2bnb

= cnb for c = 2b

so (n + a)b is O(nb)

(n + a)b ≥ (n/2)b for n ≥ 2|a|(even if a < 0)

= 2−bnb

= c ′nb for c ′ = 2−b

so (n + a)b) is Ω(nb)

16 / 26

Working with O-Ω-Θ notation

Claim: For any a, and any b > 0, (n + a)b is Θ(nb)

(n + a)b ≤ (2n)b for n ≥ |a|
= 2bnb

= cnb for c = 2b

so (n + a)b is O(nb)

(n + a)b ≥ (n/2)b for n ≥ 2|a|(even if a < 0)

= 2−bnb

= c ′nb for c ′ = 2−b

so (n + a)b) is Ω(nb)

16 / 26

Working with O-Ω-Θ notation

Claim: For any a, and any b > 0, (n + a)b is Θ(nb)

(n + a)b ≤ (2n)b for n ≥ |a|
= 2bnb

= cnb for c = 2b

so (n + a)b is O(nb)

(n + a)b ≥ (n/2)b for n ≥ 2|a|(even if a < 0)

= 2−bnb

= c ′nb for c ′ = 2−b

so (n + a)b) is Ω(nb)

16 / 26

Working with O-Ω-Θ notation (2)

Claim: For any a, b > 1, logan is Θ(logbn)

logab = x ax = b

alogab = b

(alogab)logbn = blogbn

= n

(logab)(logbn) = logan

clogbn = logan for the constant c = logab

So, logbn = Θ(logan) = Θ(log n)

17 / 26

Working with O-Ω-Θ notation (2)

Claim: For any a, b > 1, logan is Θ(logbn)

logab = x ax = b

alogab = b

(alogab)logbn = blogbn

= n

(logab)(logbn) = logan

clogbn = logan for the constant c = logab

So, logbn = Θ(logan) = Θ(log n)

17 / 26

Big-Theta, etc. not always “nice”

f (x) =

{
n2 if n even,

n else

f (n) 6= Θ(na) for any a.

Fortunately, this is rare

18 / 26

A Possible Misunderstanding?

We have looked at
type of complexity analysis

worst-, best-, average-case

types of function bounds

O, Ω, Θ

These two considerations are independent of each other

one can do any type of function bound with any type of
complexity analysis - measuring different things with
same yardstick

19 / 26

Asymptotic Bounds for Some Common Functions

Exponentials. For all
r > 1 and all d > 0,
nd = O(rn).

20 / 26

Polynomial time

Running time is O(nd) for some constant d independent
of the input size n.

21 / 26

Why It Matters

22 / 26

Example: Studying Protein Interactions

Yeast: ≈ 6k proteins

n2 −→ 36 sec
n3 −→ 2.5 days
n4 −→ 41 years. But maybe could split it over 100
computers ...
2n −→> 101000 years
1.01n −→ 1010 years

Human: ≈ 25k proteins

n2 −→ 10 min
n3 −→ 0.5 years
n4 −→ 105 years

23 / 26

Key Facts

log n ≤ nd ≤ dn (asymptotically)

Polynomial time (or faster) is good

Exponential time is bad

24 / 26

Geek-speak Faux Pas du Jour

“Any comparison-based sorting algorithm requires at least
O(n log n) comparisons.”

Statement doesn’t ”type-check.”
Use Ω for lower bounds.

25 / 26

Summary

Typical initial goal for algorithm analysis is to find a
reasonably tight (i.e., Θ if possible)
asymptotic (i.e., O or Θ)
bound on (usually upper bound)
worst case running time
as a function of problem size

This is rarely the last word, but often helps separate good
algorithms from blatantly poor ones - so you can
concentrate on the good ones!

26 / 26

