Imran Rashid

University of Washington

Jan 9, 2008

Defining Efficiency

m “Runs fast on typical real problem instances”
m Pro:

m sensible, bottom-line-oriented
m Con:

m moving target (diff computers, compilers, Moore's law)
m highly subjective (how fast is “fast”? what's “typical”’?)

Efficiency

m Our correct TSP algorithm was incredibly slow
m Basically slow no matter what computer you have
m We want a general theory of “efficiency” that is
m Simple
m Objective
m Relatively independent of changing technology

m But still predictive - “theoretically bad" algorithms
should be bad in practice and vice versa (usually)

Measuring efficiency

m Time # of instructions executed in a simple programming
language
m only simple operations (+,*,-,=,ifcall,...)
m each operation takes one time step
m each memory access takes one time step
m no fancy stuff (add these two matrices, copy this long
string,...) built in; write it/charge for it as above

m No fixed bound on the memory size

We left out things but...

m Things we've dropped
m memory hierarchy

m disk, caches, registers have many orders of magnitude
differences in access time

m not all instructions take the same time in practice
m different computers have different primitive instructions
m However,
m the RAM model is useful for designing algorithms and
measuring their efficiency

m one can usually tune implementations so that the
hierarchy etc. is not a huge factor

Complexity analysis

m Problem size n
m Worst-case complexity: max # steps algorithm takes on
any input of size n
m Best-case complexity: min # steps algorithm takes on
any input of size n
m Average-case complexity: avg # steps algorithm takes
on inputs of size n

Pros and cons:

m Best-case
m unrealistic oversell
m Average-case
m over what probability distribution? (different people may
have different “average” problems)
m analysis often hard
m Worst-case

m a fast algorithm has a comforting guarantee
m maybe too pessimistic

Why Worst-Case Analysis?

m Appropriate for time-critical applications, e.g. avionics

m Unlike Average-Case, no debate about what the right
definition is

m Analysis often easier

m Result is often representative of "typical’ problem
instances

m Of course there are exceptions. . .

General Goals

m Characterize growth rate of (worst-case) run time as a
function of problem size, up to a constant factor

m Why not try to be more precise?

m Technological variations (computer, compiler, OS, ...)
easily 10x or more

m Being more precise is a ton of work

m A key question is “scale up”: if | can afford to do it
today, how much longer will it take when my business
problems are twice as large? (E.g. today: cn?, next year:
c(2n)? = 4cn? : 4 x longer.)

Complexity

m The complexity of an algorithm associates a number
T(n), the worst-case time the algorithm takes, with each
problem size n.

10/26

O-notation etc

m Given two functions f and g : N — R
m f(n) is O(g(n)) iff there is a constant ¢ > 0 so that
f(n) is eventually always < ¢ g(n)
m f(n) is Q(g(n)) iff there is a constant ¢ > 0 so that f(n)
is eventually always > ¢ g(n)
m f(n) is ©(g(n)) iff there is are constants ci,c2 > 0 so
that eventually always ¢; g(n) < f(n) < 2 g(n)

11/26

Examples

10n% — 16n + 100

m 10n? — 16n + 100 is O(n?) also O(n?)

m 10n®> — 16n+ 100 < 11n? for all n > 10
m 10n® — 16n + 100 is Q(n?) also Q(n)

m 10n? — 16n + 100 > 9n? for all n > 16

m Therefore also 10n% — 16n + 100 is ©(n?)

m 10n* — 16n + 100 is neither O(n) nor Q(n?)

12/26

Properties

m Transitivity.
m If f = O(g) and g = O(h) then f = O(h).
m If f =Q(g) and g = Q(h) then f = Q(h).
m If f = ©(g) and g = ©(h) then f = ©(h).

m Additivity.
m If f = O(h) and g = O(h) then f + g = O(h).
m If f = Q(h) and g = Q(h) then f + g = Q(h).
m If f = ©(h) and g = O(h) then f + g = O(h).

13/26

Asymptotic Bounds for Some Common Functions

m Polynomials:
ao+ain+ ...+ agng is O(n?) if ag >0
m Logarithms:
O(logsn) = O(logpn) for any constants a, b > 0

m Logarithms:
For all x > 0, logn = O(n*)

14 /26

“One-Way Equalities”

2+2is 4 2n? +5nis O(n?)
2+2=4 2n2 +5n = O(n?)
4=2+2 Ofn2) =202 4 5p

All dogs are mammals All-mammals—are-dogs

m Bottom line:

m OK to put big-O in R.H.S. of equality, but not left.
m (Better, but uncommon, notation: 2n? +5n € O(n%))

15/26

Working with O-Q2-© notation

m Claim: For any a, and any b > 0, (n + a)® is ©(n)

16 /26

Working with O-Q2-© notation

m Claim: For any a, and any b > 0, (n+ a)® is ©(n®)

(n+a)® < (2n)° for n > |4
— 2bnb
=cn® for ¢ = 2°

so (n+ a)?is O(n®)

16 /26

Working with O-Q2-© notation

m Claim: For any a, and any b > 0, (n+ a)® is ©(n®)

(n+a)® < (2n)° for n > |4
— 2bnb
=cn® for ¢ = 2°

so (n+ a)?is O(n®)

(n+4a)® > (n/2)> for n > 2|a|(even if a < 0)
= 27bpb

= c'nP for ¢ =27b

so (n+ a)?) is Q(n?)

16 /26

Working with O--© notation (2)

m Claim: For any a, b > 1, log,n is ©(logpn)

17/26

Working with O--© notation (2)

m Claim: For any a, b > 1, log,n is ©(logpn)
log,b = x a=b
logab _ py
(/o820 ogon — plogsn
=n
(logsb)(logsn) = logan

clogyn = log,n for the constant ¢ = log,b

So, logyn = ©(log,n) = ©(log n)

17/26

Big-Theta, etc. not always

(x) = {n2 if n even,
n else

m f(n) # ©(n?) for any a.

m Fortunately, this is rare

~18/26

A Possible Misunderstanding?

m We have looked at
m type of complexity analysis
B worst-, best-, average-case
m types of function bounds
m 0 Q0
m These two considerations are independent of each other
m one can do any type of function bound with any type of
complexity analysis - measuring different things with
same yardstick

19/26

Asymptotic Bounds for Some Common Functions

m Exponentials. For all
r>1andall d>0,

n? = O(r").

20/26

Polynomial time

m Running time is O(n9) for some constant d independent
of the input size n.

21/26

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10°° years, we simply record the algorithm as
taking a very long time.

n nlog, n n? n? 15" 20 n!
n=10 < 1sec < 1sec < 1sec < 1sec < 1 sec < 1sec 4 sec
n=30 <1lsec <lsec <lsec <1 sec <1 sec 18 min 10% years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 10'7 years very long

n=1,000 < 1sec < 1sec 1 sec 18 min very long very long very long
n=10,000 < 1sec < 1sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

22/26

Example: Studying Protein Interactions

m Yeast: ~ 6k proteins
m n° — 36 sec
m n® — 2.5 days
m n* — 41 years. But maybe could split it over 100
computers ...
2" —> 101000 years
m 1.01" — 10'° years

m Human: =~ 25k proteins

m n° — 10 min
m n® — 0.5 years

m n* — 10 years

23/26

Key Facts

m logn < n? < d" (asymptotically)
m Polynomial time (or faster) is good

m Exponential time is bad

24 /26

Geek-speak Faux Pas du Jour

m “Any comparison-based sorting algorithm requires at least
O(n log n) comparisons.”
m Statement doesn't "type-check.”
m Use Q for lower bounds.

25 /26

Summary

m Typical initial goal for algorithm analysis is to find a

reasonably tight (i.e., © if possible)
asymptotic (i.e., O or ©)
bound on (usually upper bound)

worst case running time
as a function of problem size
m This is rarely the last word, but often helps separate good
algorithms from blatantly poor ones - so you can
concentrate on the good ones!

26 /26

