Analysis

Imran Rashid

University of Washington

Jan 9, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

1/26

Defining Efficiency

- "Runs fast on typical real problem instances"
- Pro:
 - sensible, bottom-line-oriented
- Con:
 - moving target (diff computers, compilers, Moore's law)
 - highly subjective (how fast is "fast"? what's "typical"?)

Efficiency

- Our correct TSP algorithm was incredibly slow
- Basically slow no matter what computer you have
- We want a general theory of "efficiency" that is
 - Simple
 - Objective
 - Relatively independent of changing technology
 - But still predictive "theoretically bad" algorithms should be bad in practice and vice versa (usually)

Measuring efficiency

- Time # of instructions executed in a simple programming language
 - only simple operations (+,*,-,=,if,call,...)
 - each operation takes one time step
 - each memory access takes one time step
 - no fancy stuff (add these two matrices, copy this long string,...) built in; write it/charge for it as above
- No fixed bound on the memory size

We left out things but...

Things we've dropped

- memory hierarchy
 - disk, caches, registers have many orders of magnitude differences in access time
- not all instructions take the same time in practice
- different computers have different primitive instructions
- However,
 - the RAM model is useful for designing algorithms and measuring their efficiency
 - one can usually tune implementations so that the hierarchy etc. is not a huge factor

Complexity analysis

Problem size n

- Worst-case complexity: max # steps algorithm takes on any input of size n
- Best-case complexity: min # steps algorithm takes on any input of size n
- Average-case complexity: avg # steps algorithm takes on inputs of size n

Pros and cons:

Best-case

- unrealistic oversell
- Average-case
 - over what probability distribution? (different people may have different "average" problems)
 - analysis often hard
- Worst-case
 - a fast algorithm has a comforting guarantee
 - maybe too pessimistic

Why Worst-Case Analysis?

- Appropriate for time-critical applications, e.g. avionics
- Unlike Average-Case, no debate about what the right definition is
- Analysis often easier
- Result is often representative of "typical" problem instances
- Of course there are exceptions...

General Goals

- Characterize growth rate of (worst-case) run time as a function of problem size, up to a constant factor
- Why not try to be more precise?
 - Technological variations (computer, compiler, OS, ...) easily 10x or more
 - Being more precise is a ton of work
 - A key question is "scale up": if I can afford to do it today, how much longer will it take when my business problems are twice as large? (E.g. today: cn^2 , next year: $c(2n)^2 = 4cn^2$: $4 \times \text{longer.}$)

Complexity

The complexity of an algorithm associates a number T(n), the worst-case time the algorithm takes, with each problem size n.

O-notation etc

- Given two functions f and $g: N \rightarrow R$
 - f(n) is O(g(n)) iff there is a constant c > 0 so that f(n) is eventually always $\leq c g(n)$
 - f(n) is $\Omega(g(n))$ iff there is a constant c > 0 so that f(n) is eventually always $\geq c g(n)$
 - f(n) is $\Theta(g(n))$ iff there is are constants $c_1, c_2 > 0$ so that eventually always $c_1 g(n) \le f(n) \le c_2 g(n)$

Examples

$$10n^{2} - 16n + 100$$

$$10n^{2} - 16n + 100 \text{ is } O(n^{2}) \text{ also } O(n^{3})$$

$$10n^{2} - 16n + 100 \leq 11n^{2} \text{ for all } n > 10$$

$$10n^{2} - 16n + 100 \text{ is } \Omega(n^{2}) \text{ also } \Omega(n)$$

$$10n^{2} - 16n + 100 \geq 9n^{2} \text{ for all } n > 16$$

$$\text{Therefore also } 10n^{2} - 16n + 100 \text{ is } \Theta(n^{2})$$

$$10n^{2} - 16n + 100 \text{ is neither } O(n) \text{ nor } \Omega(n^{3})$$

Properties

Transitivity.

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.

• If
$$f = \Theta(g)$$
 and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

• If
$$f = O(h)$$
 and $g = O(h)$ then $f + g = O(h)$

- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and g = O(h) then $f + g = \Theta(h)$.

Asymptotic Bounds for Some Common Functions

Polynomials:

 $a_0 + a_1 n + \ldots + a_d n_d$ is $\Theta(n^d)$ if $a_d > 0$

• Logarithms: $O(log_a n) = O(log_b n)$ for any constants a, b > 0

イロト 不得 トイヨト イヨト 二日

14/26

Logarithms:

For all x > 0, $logn = O(n^x)$

"One-Way Equalities"

2 + 2 is 4 $2n^2 + 5n$ is $O(n^3)$ 2 + 2 = 4 $2n2 + 5n = O(n^3)$ 4 = 2 + 2 $O(n^3) = 2n^2 + 5n$

All dogs are mammals All mammals are dogs

- Bottom line:
 - OK to put big-O in R.H.S. of equality, but not left.
 - (Better, but uncommon, notation: $2n^2 + 5n \in O(n^3)$)

Working with $\text{O-}\Omega\text{-}\Theta$ notation

Claim: For any
$$a$$
, and any $b > 0$, $(n + a)^b$ is $\Theta(n^b)$

Working with $O-\Omega-\Theta$ notation

Claim: For any a, and any b > 0, $(n + a)^b$ is $\Theta(n^b)$

$$(n+a)^b \le (2n)^b$$
 for $n \ge |a|$
 $= 2^b n^b$
 $= cn^b$ for $c = 2^b$

so $(n+a)^b$ is $O(n^b)$

Working with $O-\Omega-\Theta$ notation

Claim: For any a, and any b > 0, $(n + a)^b$ is $\Theta(n^b)$

$$(n+a)^b \le (2n)^b$$
 for $n \ge |a|$
 $= 2^b n^b$
 $= cn^b$ for $c = 2^b$

so $(n + a)^b$ is $O(n^b)$ $(n + a)^b \ge (n/2)^b$ for $n \ge 2|a|$ (even if a < 0) $= 2^{-b}n^b$ $= c'n^b$ for $c' = 2^{-b}$ so $(n + a)^b$) is $\Omega(n^b)$

Working with O- Ω - Θ notation (2)

• Claim: For any $a, b > 1, \log_a n$ is $\Theta(\log_b n)$

Working with $O-\Omega-\Theta$ notation (2)

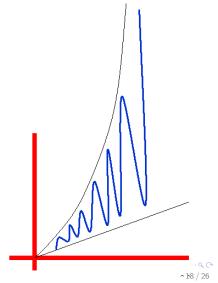
• Claim: For any $a, b > 1, \log_a n$ is $\Theta(\log_b n)$

$$log_a b = x$$
 $a^x = b$
 $a^{log_a b} = b$
 $(a^{log_a b})^{log_b n} = b^{log_b n}$
 $= n$
 $(log_a b)(log_b n) = log_a n$
 $clog_b n = log_a n$ for the constant $c = log_a b$

So, $log_b n = \Theta(log_a n) = \Theta(\log n)$

Big-Theta, etc. not always "nice"

$$f(x) = \begin{cases} n^2 & \text{if } n \text{ even,} \\ n & \text{else} \end{cases}$$



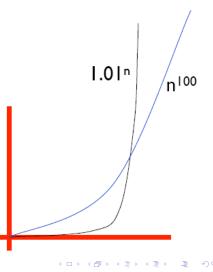
A Possible Misunderstanding?

We have looked at

- type of complexity analysis
 - worst-, best-, average-case
- types of function bounds
 - 🛛 Ο, Ω, Θ
- These two considerations are independent of each other
 - one can do any type of function bound with any type of complexity analysis - measuring different things with same yardstick

Asymptotic Bounds for Some Common Functions

• Exponentials. For all r > 1 and all d > 0, $n^d = O(r^n)$.



20 / 26

Polynomial time

Running time is O(n^d) for some constant d independent of the input size n.

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	n log ₂ n	n ²	n ³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Example: Studying Protein Interactions

• Yeast: $\approx 6k$ proteins

- $n^2 \longrightarrow 36 \text{ sec}$
- $n^3 \longrightarrow 2.5$ days
- n⁴ → 41 years. But maybe could split it over 100 computers ...
- $2^n \longrightarrow > 10^{1000}$ years
- $1.01^n \longrightarrow 10^{10}$ years
- Human: $\approx 25k$ proteins
 - $\bullet \ n^2 \longrightarrow 10 \ \min$
 - $n^3 \longrightarrow 0.5$ years
 - $n^4 \longrightarrow 10^5$ years

Key Facts

- $\log n \le n^d \le d^n$ (asymptotically)
- Polynomial time (or faster) is good
- Exponential time is bad

Geek-speak Faux Pas du Jour

 "Any comparison-based sorting algorithm requires at least O(n log n) comparisons."

イロト 不得 トイヨト イヨト 二日

25 / 26

- Statement doesn't "type-check."
- Use Ω for lower bounds.

Summary

- Typical initial goal for algorithm analysis is to find a reasonably tight (i.e., Ø if possible) asymptotic (i.e., O or Ø) bound on (usually upper bound) worst case running time as a function of problem size
- This is rarely the last word, but often helps separate good algorithms from blatantly poor ones - so you can concentrate on the good ones!