CSE 417: Algorithms and Computational **Complexity** Lecture I: Overview

Imran Rashid

University of Washington

Jan 7, 2008

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

Course Web Page

http://www.cs.washington.edu/417

What the course is about

Design of Algorithms

- design methods
- common or important types of problems \blacksquare

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- analysis of algorithms efficiency
- correctness proofs

What the course is about

■ Complexity, NP-completeness and intractability

- solving problems in principle is not enough
	- algorithms must be efficient
- some problems have no efficient solution
- NP-complete problems
	- **n** important & useful class of problems whose solutions (seemingly) cannot be found efficiently, but can be checked easily

Very Rough Division of Time

Algorithms (7 weeks)

- **Analysis of Algorithms**
- $\mathcal{L}_{\mathcal{A}}$ Basic Algorithmic Design Techniques
- Graph Algorithms
- Complexity & NP-completeness (3 weeks)
- Check online schedule page for (evolving) details

AD A REAKEN E VOOR

Complexity Example

■ Cryptography (e.g. RSA, SSL in browsers)

- Secret: p,q prime, say 512 bits each
- **Public:** n which equals $p \times q$, 1024 bits
- \blacksquare In principle
	- there is an algorithm that given n will find p and q : try all 2^{512} possible p's, an astronomical number

AD A REAKEN E VOOR

- \blacksquare In practice
	- \blacksquare no efficient algorithm is known for this problem
	- security of RSA depends on this fact

Algorithms or Hardware?

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z}) \Rightarrow 2990

Algorithms or Hardware?

- 25 years progress solving sparse linear systems
- hardware: 4 orders of magnitude
- software: 6 orders of magnitude

Algorithms or Hardware?

■ The N-Body Problem: \blacksquare in 30 years 10^7 hardware

Algorithm: definition

- **Procedure to accomplish a task or solve a well-specified** problem
	- Well-specified: know what all possible inputs look like and what output looks like given them

ALL AND ARE ARE SHOP

- \blacksquare "accomplish" via simple, well-defined steps
- Ex: sorting names (via comparison)
- Ex: checking for primality (via $+$, $-$, $*$, $/$,)

Algorithms: a sample problem

- **Printed circuit-board company has** a robot arm that solders components to the board
- Time: proportional to total distance the arm must move from initial rest position around the board and back to the initial position
- For each board design, find best order to do the soldering

KOD KAR KED KED E YOUN

Algorithms: a sample problem

- **Printed circuit-board company has** a robot arm that solders components to the board
- Time: proportional to total distance the arm must move from initial rest position around the board and back to the initial position
- For each board design, find best order to do the soldering

KOD KAR KED KED E YOUN

A Well-defined Problem

- **Input:** Given a set S of n points in the plane
- Output: The shortest cycle tour that visits each point in the set S.

AD A REAKEN E VOOR

- Better known as "TSP"
- \blacksquare How might you solve it?

Nearest Neighbor Heuristic

- **heuristic** A rule of thumb, simplification, or educated guess that reduces or limits the search for solutions indomains that are difficult and poorly understood.
	- **May be good, but usually not guaranteed to give the** best or fastest solution.

- **1** Start at some point p_0
- 2 Walk first to its nearest neighbor p_1
- **3** Repeatedly walk to the nearest unvisited neighbor p_2 , then p_3 ... until all points have been visited

4 Then walk back to p_0

Nearest Neighbor Heuristic

- **1** Start at some point p_0
- **2** Walk first to its nearest neighbor p_1
- **3** Repeatedly walk to the nearest unvisited neighbor p_2 , then p_3 ,... until all points have been visited
- **4** Then walk back to p_0

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 2990

An input where it works badly

K □ ▶ K @ ▶ K 할 X K 할 X (할) 10 Q Q Q

An input where it works badly

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Nearest Neighor Length= 84 $\overline{\mathcal{L}}$

An input where it works badly

K ロ > K @ > K 할 > K 할 > → 할 → 9 Q @

- Nearest Neighor Length= 84 $\mathcal{L}_{\mathcal{A}}$
- Optimal Length $= 64$

Revised idea - Closest pairs first

- \blacksquare Repeatedly join the closest pair of points
	- \blacksquare (s.t. result can still be part of a single loop in the end. I.e., join endpoints, but not points in middle, of path segments already created.)

AD A REAKEN E VOOR

How does this work on our bad example?

Another bad example

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Another bad example

■ Length =
$$
6 + \sqrt{10} \approx 9.16
$$

Length = 8

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 | X 9 Q @

Something that works

For each of the $n! = n(n-1)(n-2)...1$ orderings of the points, check the length of the cycle you get

AD A REAKEN E VOOR

 \blacksquare Keep the best one

Two Notes

■ The two incorrect algorithms were greedy

- Often very natural & tempting ideas
- They make choices that look great "locally" (and never reconsider them)
- When greed works, the algorithms are typically efficient

AD A REAKEN E YOUR

- **BUT:** often does not work you get boxed in
- Our correct alg avoids this, but is incredibly slow
	- 20! is so large that checking one billion per second would take 2.4 billion seconds (around 70 years!)

- **1 Find Min Spanning Tree**
- **2** Walk around it
- 3 Take shortcuts (instead of revisiting)

 $\begin{array}{rcl} \mathcal{A} & \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \end{array}$

- **1** Find Min Spanning Tree
- **2** Walk around it
- 3 Take shortcuts (instead of revisiting)

- **1** Find Min Spanning Tree
- 2 Walk around it
- 3 Take shortcuts (instead of revisiting)

- **1** Find Min Spanning Tree
- **2** Walk around it
- 3 Take shortcuts (instead of revisiting)

Guarenteed Approximation

- \blacksquare Maybe seems a little wacky ...
- \blacksquare but its always within a factor of 2 of the best tour!

Proof.

Deleting one edge from best tour gives a spanning tree, so:

Min spanning tree \leq best tour best tour ≤wacky tour wacky tour $\leq 2 * MST \leq 2 * best$

AD A REAKEN E YOUR

The Morals of the Story

- Simple problems can be hard
	- **Factoring, TSP**
- Simple ideas don't always work
	- Nearest neighbor, closest pair heuristics
- Simple algorithms can be very slow
	- **Brute-force factoring, TSP**
- Changing your objective can be good
	- Guaranteed approximation for TSP

AD A REAKEN E YOUR