
CSE 417: Algorithms and Computational

Complexity

Lecture I: Overview

Imran Rashid

University of Washington

Jan 7, 2008



Course Web Page

http://www.cs.washington.edu/417



What the course is about

Design of Algorithms

design methods
common or important types of problems
analysis of algorithms - efficiency
correctness proofs



What the course is about

Complexity, NP-completeness and intractability
solving problems in principle is not enough

algorithms must be efficient

some problems have no efficient solution
NP-complete problems

important & useful class of problems whose solutions
(seemingly) cannot be found efficiently, but can be
checked easily



Very Rough Division of Time

Algorithms (7 weeks)

Analysis of Algorithms
Basic Algorithmic Design Techniques
Graph Algorithms

Complexity & NP-completeness (3 weeks)

Check online schedule page for (evolving) details



Complexity Example

Cryptography (e.g. RSA, SSL in browsers)

Secret: p,q prime, say 512 bits each
Public: n which equals p x q, 1024 bits

In principle

there is an algorithm that given n will find p and q: try
all 2512 possible p’s, an astronomical number

In practice

no efficient algorithm is known for this problem
security of RSA depends on this fact



Algorithms or Hardware?

25 years progress
solving sparse
linear systems

hardware: 4
orders of
magnitude

software: 6 orders
of magnitude



Algorithms or Hardware?

25 years progress
solving sparse
linear systems

hardware: 4
orders of
magnitude

software: 6 orders
of magnitude



Algorithms or Hardware?

The N-Body
Problem:

in 30 years

107 hardware
1010 software



Algorithm: definition

Procedure to accomplish a task or solve a well-specified
problem

Well-specified: know what all possible inputs look like
and what output looks like given them
“accomplish” via simple, well-defined steps
Ex: sorting names (via comparison)
Ex: checking for primality (via +, -, *, /, )



Algorithms: a sample problem

Printed circuit-board company has
a robot arm that solders
components to the board

Time: proportional to total distance
the arm must move from initial rest
position around the board and back
to the initial position

For each board design, find best
order to do the soldering



Algorithms: a sample problem

Printed circuit-board company has
a robot arm that solders
components to the board

Time: proportional to total distance
the arm must move from initial rest
position around the board and back
to the initial position

For each board design, find best
order to do the soldering



A Well-defined Problem

Input: Given a set S of n points in the plane

Output: The shortest cycle tour that visits each point in
the set S .

Better known as “TSP”

How might you solve it?



Nearest Neighbor Heuristic

heuristic A rule of thumb, simplification, or educated
guess that reduces or limits the search for solutions
indomains that are difficult and poorly understood.

May be good, but usually not guaranteed to give the
best or fastest solution.

1 Start at some point p0

2 Walk first to its nearest neighbor p1

3 Repeatedly walk to the nearest unvisited neighbor p2,
then p3,. . . until all points have been visited

4 Then walk back to p0



Nearest Neighbor Heuristic

1 Start at some point p0

2 Walk first to its nearest
neighbor p1

3 Repeatedly walk to the
nearest unvisited neighbor p2,
then p3,. . . until all points
have been visited

4 Then walk back to p0



An input where it works badly

Nearest Neighor Length= 84

Optimal Length = 64



An input where it works badly

Nearest Neighor Length= 84

Optimal Length = 64



An input where it works badly

Nearest Neighor Length= 84

Optimal Length = 64



Revised idea - Closest pairs first

Repeatedly join the closest pair of points

(s.t. result can still be part of a single loop in the end.
I.e., join endpoints, but not points in middle, of path
segments already created.)

How does this work on our bad example?



Another bad example

Closest Pairs



Another bad example

Closest Pairs

Length =
6 +

√
10 ≈ 9.16

Optimal

Length = 8



Something that works

For each of the n! = n(n− 1)(n− 2) . . . 1 orderings of the
points, check the length of the cycle you get

Keep the best one



Two Notes

The two incorrect algorithms were greedy

Often very natural & tempting ideas
They make choices that look great “locally” (and never
reconsider them)
When greed works, the algorithms are typically efficient
BUT: often does not work - you get boxed in

Our correct alg avoids this, but is incredibly slow

20! is so large that checking one billion per second
would take 2.4 billion seconds (around 70 years!)



Something that “works” (differently)

1 Find Min Spanning Tree

2 Walk around it

3 Take shortcuts (instead of revisiting)



Something that “works” (differently)

1 Find Min Spanning Tree

2 Walk around it

3 Take shortcuts (instead of revisiting)



Something that “works” (differently)

1 Find Min Spanning Tree

2 Walk around it

3 Take shortcuts (instead of revisiting)



Something that “works” (differently)

1 Find Min Spanning Tree

2 Walk around it

3 Take shortcuts (instead of revisiting)



Guarenteed Approximation

Maybe seems a little wacky ...

but its always within a factor of 2 of the best tour!

Proof.

Deleting one edge from best tour gives a spanning tree, so:

Min spanning tree <best tour

best tour ≤wacky tour

wacky tour ≤2 ∗MST ≤ 2 ∗ best



The Morals of the Story

Simple problems can be hard

Factoring, TSP

Simple ideas don’t always work

Nearest neighbor, closest pair heuristics

Simple algorithms can be very slow

Brute-force factoring, TSP

Changing your objective can be good

Guaranteed approximation for TSP


