
CSE417: Review

Larry Ruzzo
Winter 2007

© W.L.Ruzzo & UW CSE 1997-2007

2

Complexity, I

Asymptotic Analysis
Best/average/worst cases
Upper/Lower Bounds
Big O, Theta, Omega
Analysis methods

loops
recurrence relations
common data structures, subroutines

3

Graph Algorithms

Graphs
Representation (edge list/adjacency matrix)
Breadth/depth first search
Bipartitness/2-Colorability
DAGS and topological ordering

4

Design Paradigms

Greedy
Dynamic Programming

recursive solution, redundant subproblems, few
do all in careful order and tabulate

Divide & Conquer
recursive solution
superlinear work
balanced subproblems

5

Examples

Greedy
Interval Scheduling Problems

Huffman Codes

6

Examples

Dynamic programming
Fibonacci

Making change/Stamps

Weighted Interval Scheduling
RNA

Divide & Conquer
Merge sort

Closest pair of points

Integer multiplication (Karatsuba)

7

Complexity, II

P vs NP
Big-O and poly vs exponential growth

Definition of NP - hints and verifiers

Example problems from slides, reading & hw
SAT, VertexCover, quadratic Diophantine equations, clique, independent
set, TSP, Hamilton cycle, coloring, max cut

P ⊆ NP ⊆ Exp

Definition of (polynomial time) reduction
SAT ≤p VertexCover example (how, why correct, why ≤p, implications)

Definition of NP-completeness
2x approximation to Euclidean TSP

8

Some Typical Questions

Give O() bound on 17n*(n-3+logn)
Give O() bound on some code {for i=1 to n {for j …}}
True/False: If X is O(n2), then it’s rarely more than n3 +14 steps.
Give a run time recurrence for a recursive alg, or solve a simple one
Simulate any of the algs we’ve studied
Give an alg for problem X, maybe a variant of one we’ve studied, or
prove it’s in NP
Understand parts of correctness proof for an algorithm or reduction
Implications of NP-completeness

