CSE 417 Introduction to Algorithms Winter 2007

NP-Completeness (Chapter 8)

I

Some Algebra Problems (Algorithmic)

Given positive integers a, b, c

Question I: does there exist a positive integer x such that ax = c?

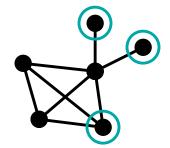
Question 2: does there exist a positive integer x such that $ax^2 + bx = c$?

Question 3: do there exist positive integers x and y such that $ax^2 + by = c$?

Some Problems

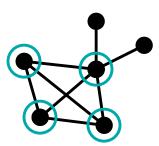
Independent-Set:

Given a graph G=(V,E) and an integer k, is there a subset U of V with $|U| \ge k$ such that no two vertices in U are joined by an edge.



Clique:

Given a graph G=(V,E) and an integer k, is there a subset U of V with $|U| \ge k$ such that every pair of vertices in U is joined by an edge.



A Brief History of Ideas

From Classical Greece, if not earlier, "logical thought" held to be a somewhat mystical ability

Mid 1800's: Boolean Algebra and foundations of mathematical logic created possible "mechanical" underpinnings

1900: David Hilbert's famous speech outlines program: mechanize all of mathematics?

http://mathworld.wolfram.com/HilbertsProblems.html

1930's: Gödel, Church, Turing, et al. prove it's impossible

More History

1930/40's

What is (is not) computable

1960/70's

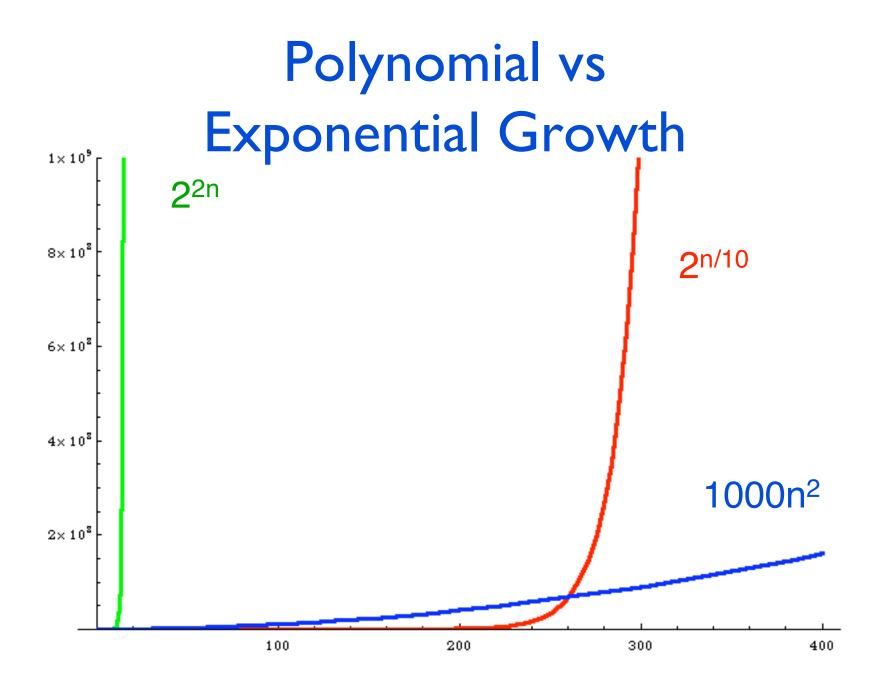
What is (is not) feasibly computable

Goal – a (largely) technology-independent theory of time required by algorithms

Key modeling assumptions/approximations

Asymptotic (Big-O), worst case is revealing

Polynomial, exponential time – qualitatively different



Another view of Poly vs Exp

Next year's computer will be 2x faster. If I can solve problem of size n_0 today, how large a problem can I solve in the same time next year?

Complexity	Increase	E.g. T=10 ¹²	
O(n)	$n_0 \rightarrow 2n_0$	10 ¹²	2×10^{12}
$O(n^2)$	$n_0 \rightarrow \sqrt{2} n_0$	106	1.4 x 10 ⁶
$O(n^3)$	$n_0 \rightarrow \sqrt[3]{2} n_0$	104	1.25 x 10 ⁴
2 ^{n /10}	$n_0 \rightarrow n_0 + 10$	400	410
2 ⁿ	$n_0 \rightarrow n_0 + 1$	40	41

Polynomial versus exponential

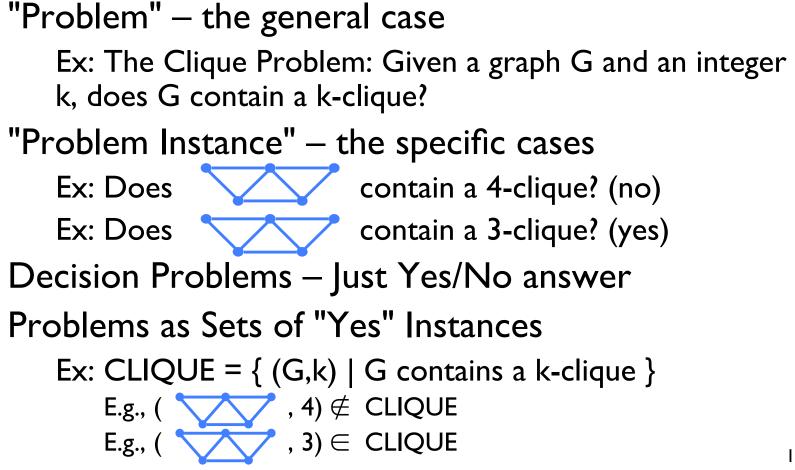
We'll say any algorithm whose run-time is polynomial is good bigger than polynomial is bad

Note – of course there are exceptions:

n¹⁰⁰ is bigger than (1.001)ⁿ for most practical values of n but usually such run-times don't show up

There are algorithms that have run-times like $O(2^{sqrt(n)/22})$ and these may be useful for small input sizes, but they're not too common either

Some Convenient Technicalities



Decision problems

Computational complexity usually analyzed using decision problems

answer is just I or 0 (yes or no).

Why?

much simpler to deal with

deciding whether G has a k-clique, is certainly no harder than finding a k-clique in G, so a lower bound on deciding is also a lower bound on finding

Less important, but if you have a good decider, you can often use it to get a good finder. (Ex.: does G still have a k-clique after I remove this vertex?)

The class P

Definition: P = set of (decision) problems solvable by computers in polynomial time. i.e.,

 $T(n) = O(n^k)$ for some fixed k.

These problems are sometimes called tractable problems.

Examples: sorting, shortest path, MST, connectivity, RNA folding & other dyn. prog. – most of 417 (exceptions: Change-Making/Stamps, TSP)

Beyond P?

There are many natural, practical problems for which we don't know any polynomial-time algorithms

e.g. CLIQUE:

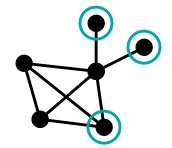
Given an undirected graph G and an integer k, does G contain a k-clique?

e.g. quadratic Diophantine equations: Given a, b, c \in N, 3 x, y \in N s.t. ax² + by = c ?

Some Problems

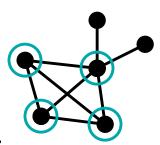
Independent-Set:

Given a graph G=(V,E) and an integer k, is there a subset U of V with $|U| \ge k$ such that no two vertices in U are joined by an edge.



Clique:

Given a graph G=(V,E) and an integer k, is there a subset U of V with $|U| \ge k$ such that every pair of vertices in U is joined by an edge.



Some More Problems

Euler Tour:

Given a graph G=(V,E) is there a cycle traversing each edge once.

Hamilton Tour:

Given a graph G=(V,E) is there a simple cycle of length |V|, i.e., traversing each vertex once.

TSP:

Given a weighted graph G=(V,E,w) and an integer k, is there a Hamilton tour of G with total weight $\leq k$.

Satisfiability

Boolean variables x₁, ..., x_n

taking values in {0,1}. 0=false, 1=true

Literals

 x_i or $\neg x_i$ for i = I, ..., n

Clause

a logical OR of one or more literals

e.g. $(x_1 \vee \neg x_3 \vee x_7 \vee x_{12})$

CNF formula

a logical AND of a bunch of clauses

Satisfiability

CNF formula example

 $(x_1 \vee \neg x_3 \vee x_7) \land (\neg x_1 \vee \neg x_4 \vee x_5 \vee \neg x_7)$

If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable

the one above is, the following isn't

 $\mathbf{x}_1 \land (\neg \mathbf{x}_1 \lor \mathbf{x}_2) \land (\neg \mathbf{x}_2 \lor \mathbf{x}_3) \land \neg \mathbf{x}_3$

Satisfiability: Given a CNF formula F, is it satisfiable?

Satisfiable?

$$(x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor \neg y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor y \lor z) \land (x \lor \neg y \lor z) \land (x \lor y \lor \neg z)$$

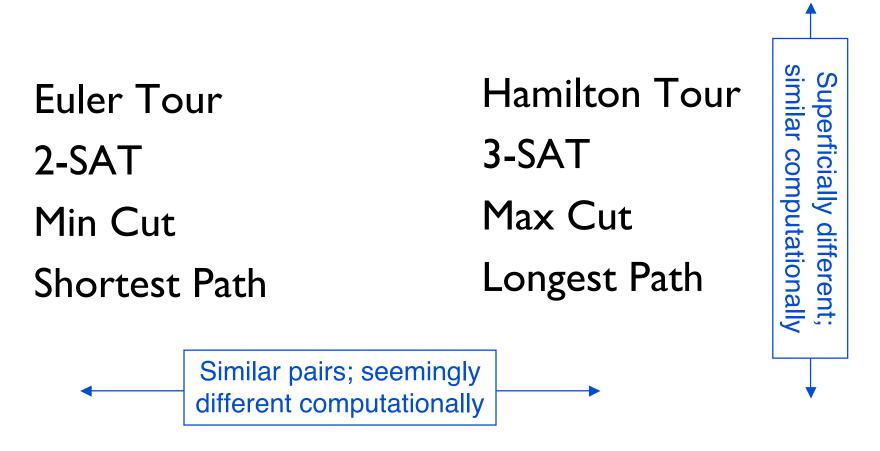
$$\begin{pmatrix} x & v & y & v & z \end{pmatrix} \land (\neg x & v & y & v & \neg z) \land (\neg x & v & \gamma & v & z) \land (\neg x & v & \neg y & v & z) \land (\neg x & v & \neg y & v & \neg z) \land (\neg x & v & \gamma & v & z) \land (x & v & \gamma & v & \neg z) \end{pmatrix}$$

More History – As of 1970

Many of the above problems had been studied for decades All had real, practical applications None had poly time algorithms; exponential was best known

But, it turns out they all have a very deep similarity under the skin

Some Problem Pairs



Common property of these problems

There is a special piece of information, a short hint or proof, that allows you to efficiently (in polynomial-time) verify that the YES answer is correct. *BUT*, this hint might be very hard to find

e.g.

TSP: the tour itself Independent-Set, Clique: the vertex set U Satisfiability: an assignment that makes formula true Quadratic Diophantine eqns: the numbers x & y

The complexity class NP

NP consists of all decision problems where

You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint

And

No hint can fool your polynomial time verifier into saying YES for a NO instance

(implausible for all exponential time problems)

More Precise Definition of NP

A decision problem is in NP iff there is a polynomial time procedure v(-,-), and an integer k such that

for every YES problem instance x there is a hint h with $|h| \le |x|^k$ such that v(x,h) = YES and

for every NO problem instance x there is no hint h with $|h| \le |x|^k$ such that v(x,h) = YES

"Hints" sometimes called "Certificates"

Example: CLIQUE is in NP

```
procedure v(x,h)
if
    x is a well-formed representation of a graph
    G = (V, E) and an integer k,
    and
```

```
h is a well-formed representation of a k-vertex subset U of V,
```

and

```
U is a clique in G,
then output "YES"
else output "I'm unconvinced"
```

ls it correct?

For every x = (G,k) such that G contains a k-clique, there is a hint h that will cause v(x,h) to say YES, namely h = a list of the vertices in such a k-clique and

No hint can fool v into saying yes if either x isn't well-formed (the uninteresting case) or if x = (G,k)but G does not have any cliques of size k (the interesting case)

Another example: $SAT \in NP$

Hint: the satisfying assignment A

Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)

Syntax: True iff F is a well-formed formula & A is a truth-assignment to its variables

Satisfies: plug A into F and evaluate

Correctness:

If F is satisfiable, it has some satisfying assignment A, and we'll recognize it

If F is unsatisfiable, it doesn't, and we won't be fooled

Keys to showing that a problem is in NP

What's the output? (must be YES/NO)

What's the input? Which are YES?

For every given YES input, is there a hint that would help? Is it polynomial length?

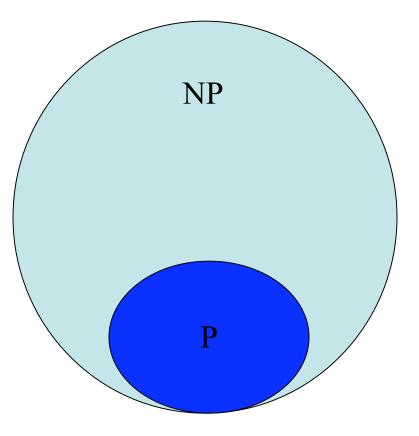
OK if some inputs need no hint

For any given NO input, is there a hint that would trick you?

Complexity Classes

NP = Polynomial-time verifiable

P = Polynomial-time
 solvable



Solving NP problems without hints

The most obvious algorithm for most of these problems is brute force:

- try all possible hints; check each one to see if it works. Exponential time:
 - 2ⁿ truth assignments for n variables
 - n! possible TSP tours of n vertices

 $\binom{n}{k}$ possible k element subsets of n vertices etc.

...and to date, every alg, even much less-obvious ones, are slow, too

Problems in P can also be verified in polynomial-time

Short Path: Given a graph G with edge lengths, is there a path from s to t of length $\leq k$?

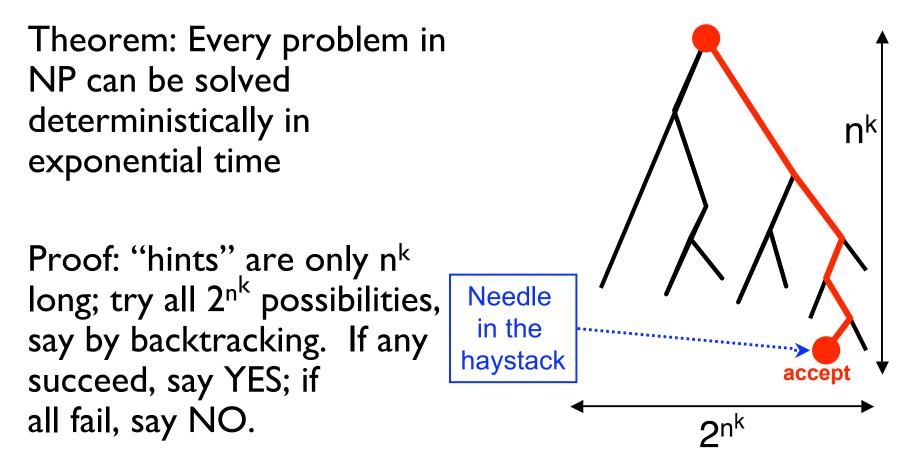
Verify: Given a purported path from s to t, is it a path, is its length $\leq k$?

Small Spanning Tree: Given a weighted undirected graph G, is there a spanning tree of weight $\leq k$?

Verify: Given a purported spanning tree, is it a spanning tree, is its weight $\leq k$?

(But the hints aren't really needed in these cases...)

P vs NP vs Exponential Time



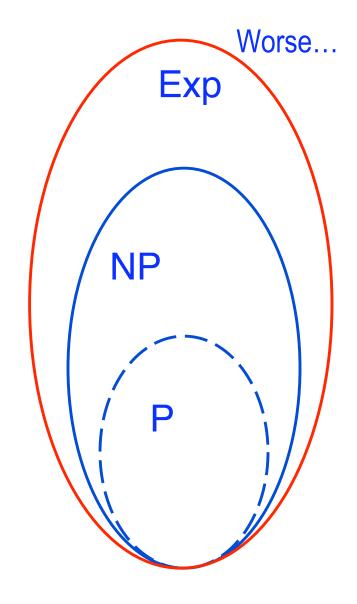
P and NP

Every problem in P is in NP

one doesn't even need a hint for problems in P so just ignore any hint you are given

Every problem in NP is in exponential time

I.e., $P \subseteq NP \subseteq Exp$ We know $P \neq Exp$, so either $P \neq NP$, or $NP \neq Exp$ (most likely both)



P vs NP

Theory P = NP ? Open Problem! I bet against it

Practice

Many interesting, useful, natural, well-studied problems known to be NP-complete

With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances

A problem NOT in NP; A bogus "proof" to the contrary $EEXP = \{(p,x) \mid prog \ p \ accepts \ input \ x \ in < 2^{2^{|x|}} \ steps \}$ NON Theorem: EEXP in NP "Proof" 1: Hint = step-by-step trace of the computation of p on x; verify step-by-step

"Proof" II: Hint = a bit; accept iff it's 1

More Connections

Some Examples in NP

- Satisfiability
- Independent-Set
- Clique
- Vertex Cover

All hard to solve; hints seem to help on all

Very surprising fact:

Fast solution to any gives fast solution to all!

NP-complete Problems

We are pretty sure that no problem in NP - P can be solved in polynomial time.

Non-Definition: NP-complete = the hardest problems in the class NP. (Formal definition later.) Interesting fact: If any one NP-complete problem could be solved in polynomial time, then all NP problems could be solved in polynomial time.

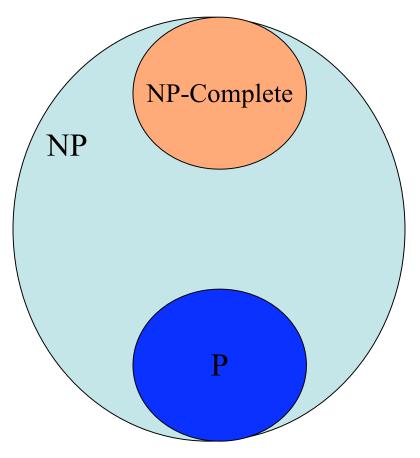
Complexity Classes

NP = Poly-time **verifiable**

P = Poly-time **solvable**

NP-Complete =

"Hardest" problems in NP



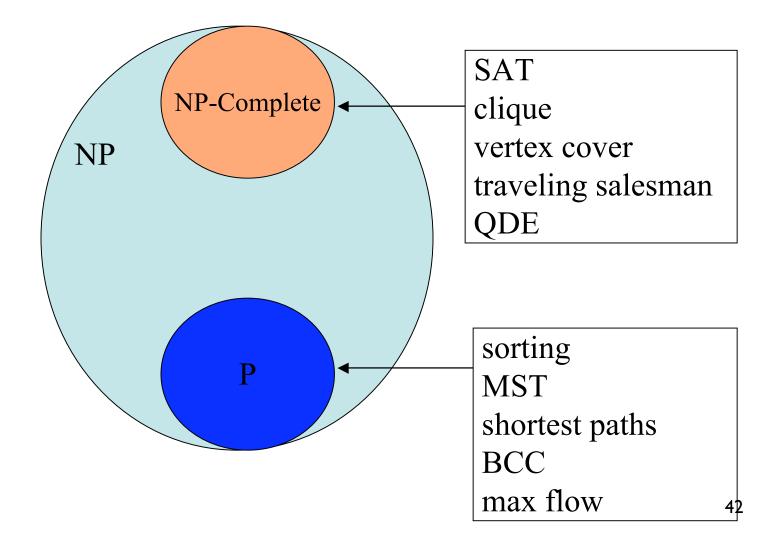
The class NP-complete (cont.)

Thousands of important problems have been shown to be NP-complete.

Fact (Dogma): The general belief is that there is no efficient algorithm for any NP-complete problem, but no proof of that belief is known.

Examples: SAT, clique, vertex cover, Hamiltonian cycle, TSP, bin packing.

Complexity Classes of Problems



Does P = NP?

This is an open question.

To show that P = NP, we have to show that every problem that belongs to NP can be solved by a polynomial time deterministic algorithm.

No one has shown this yet.

(It seems unlikely to be true.)

Is all of this useful for anything?

Earlier in this class we learned techniques for solving problems in P.

Question: Do we just throw up our hands if we come across a problem we suspect not to be in P?

Dealing with NP-complete Problems

What if I think my problem is not in P?

Here is what you might do:

I) Prove your problem is NP-hard or -complete

(a common, but not guaranteed outcome)

2) Come up with an algorithm to solve the problem usually or approximately.

Reductions: a useful tool

Definition: To reduce A to B means to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT Solution: sort, then select (n/2)nd Example: reduce SORT to FIND_MAX Solution: FIND_MAX, remove it, repeat Example: reduce MEDIAN to FIND_MAX Solution: transitivity: compose solutions above.

Reductions: Why useful

Definition: To reduce A to B means to solve A, given a subroutine solving B.

Fast algorithm for B implies fast algorithm for A (nearly as fast; takes some time to set up call, etc.)

If every algorithm for A is slow, then no algorithm for B can be fast.

"complexity of A" < "complexity of B" + "complexity of reduction"

SAT is NP-complete

Cook's theorem: SAT is NP-complete

Satisfiability (SAT)

A Boolean formula in conjunctive normal form (CNF) is satisfiable if there exists a truth assignment of 0's and 1's to its variables such that the value of the expression is 1. Example:

 $S=(x+y+\neg z)\bullet(\neg x+y+z)\bullet(\neg x+\neg y+\neg z)$

Example above is satisfiable. (We can see this by setting x=1, y=1 and z=0.)

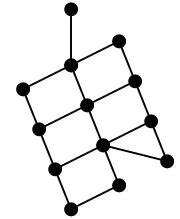
NP-complete problem: Vertex Cover

Input: Undirected graph G = (V, E), integer k. Output: True iff there is a subset C of V of size \leq k such that every edge in E is incident to at least one vertex in C.

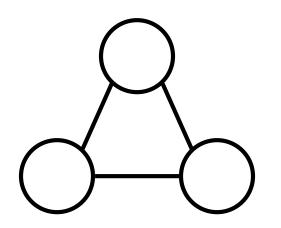
Example: Vertex cover of size ≤ 2 .



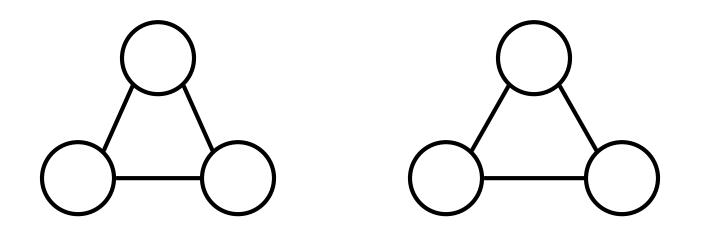
In NP? Exercise

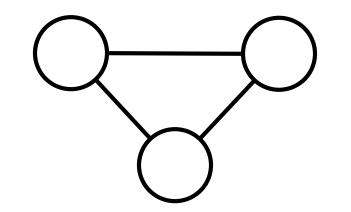


$3SAT \leq_p VertexCover$



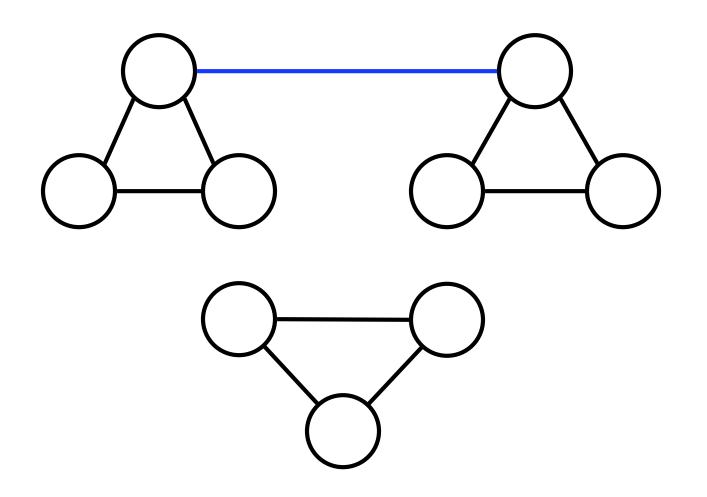
$3SAT \leq_{p} VertexCover$

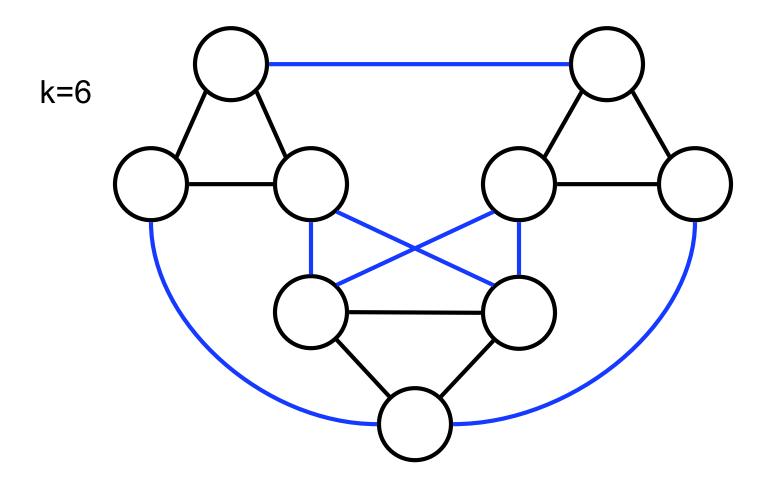


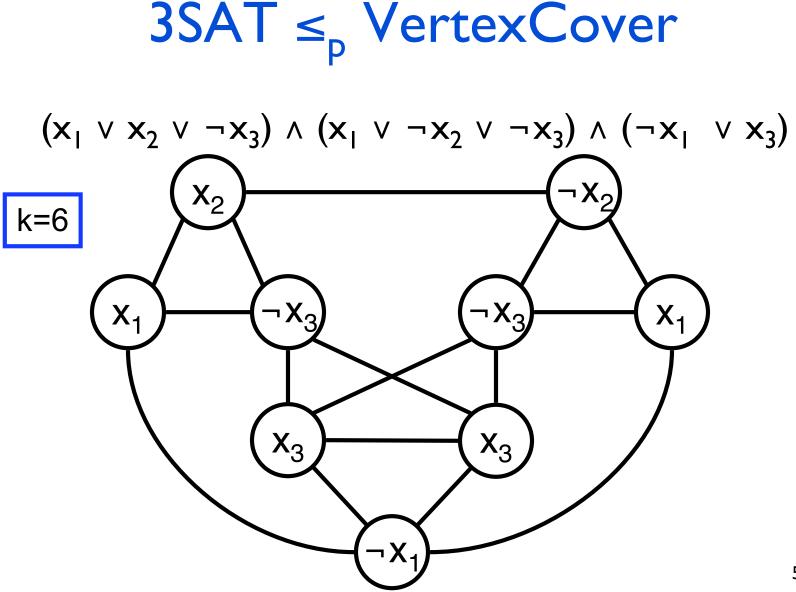


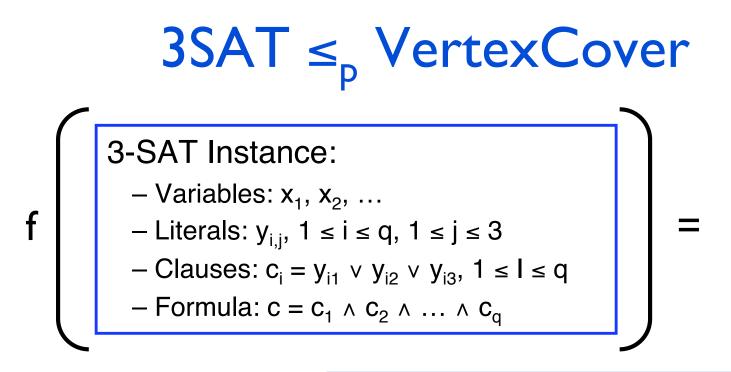
51

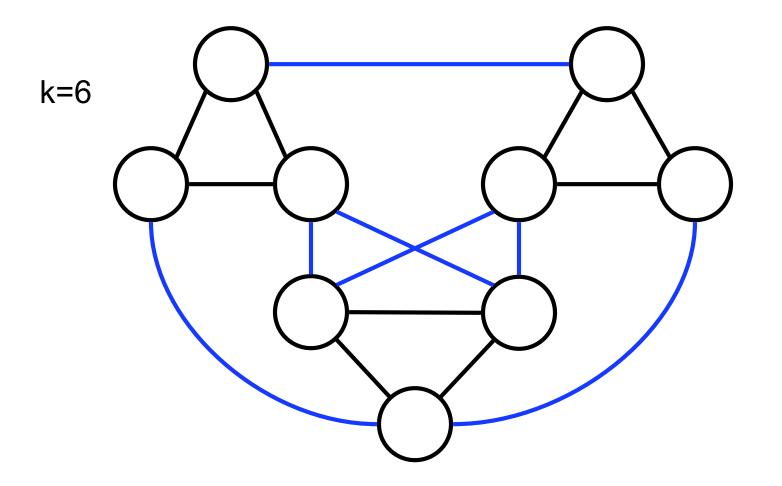
$3SAT \leq_{p} VertexCover$











Correctness of " $3SAT \leq_p VertexCover$ "

Summary of reduction function f: Given formula, make graph G with one group per clause, one node per literal. Connect each to all nodes in same group, plus complementary literals $(x, \neg x)$. Output graph G plus integer k = 2 * number of clauses. Note: f does not know whether formula is satisfiable or not; does not know if G has k-cover; does not try to find satisfying assignment or cover.

Correctness:

Show f poly time computable: A key point is that graph size is polynomial in formula size; mapping basically straightforward.

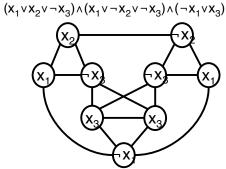
Show c in 3-SAT iff f(c)=(G,k) in VertexCover:

(\Rightarrow) Given an assignment satisfying c, pick one true literal per clause. Add other 2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle edges; only true literals (but perhaps not all true literals) uncovered, so at least one end of every (x, \neg x) edge is covered.

(\Leftarrow) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) truth assignment since no (x, \neg x) pair uncovered. It satisfies c since there is one uncovered node in each clause triangle (else some other clause triangle has > I uncovered node, hence an uncovered edge.)

Utility of " $3SAT \leq_p VertexCover$ "

Suppose we had a fast algorithm for VertexCover, then we could get a fast algorithm for 3SAT:



Given 3-CNF formula w, build Vertex Cover instance y = f(w) as above, run the fast VC alg on y; say "YES, w is satisfiable" iff VC alg says "YES, y has a vertex cover of the given size"

On the other hand, suppose no fast alg is possible for 3SAT, then we know none is possible for VertexCover either.

" $3SAT \leq_{p} VertexCover"$ Retrospective

Previous slide: two suppositions Somewhat clumsy to have to state things that way.

Alternative: abstract out the key elements, give it a name ("polynomial time reduction"), then properties like the above always hold.

Polynomial-Time Reductions

Definition: Let A and B be two problems.

We say that A is *polynomially reducible* to B if there exists a polynomial-time algorithm f that converts each instance x of problem A to an instance f(x) of B such that

x is a YES instance of A iff f(x) is a YES instance of B.

 $x \in A \iff f(x) \in B$

Polynomial-Time Reductions (cont.)

Define: $A \leq_p B$ "A is polynomial-time reducible to B", iff there is a polynomial-time computable function f such that: $x \in A \iff f(x) \in B$

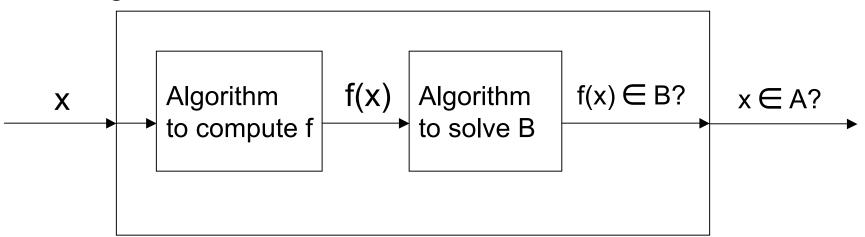
"complexity of A" \leq "complexity of B" + "complexity of f"

(1)
$$A \le p B$$
 and $B \in P \implies A \in P$
(2) $A \le p B$ and $A \notin P \implies B \notin P$
(3) $A \le p B$ and $B \le p C \implies A \le p C$ (transitivity)

Why the notation?

Using an Algorithm for **B** to Solve **A**

Algorithm to solve A



"If $A \leq_p B$, and we can solve B in polynomial time, then we can solve A in polynomial time also."

Ex: suppose f takes $O(n^3)$ and algorithm for B takes $O(n^2)$. How long does the above algorithm for A take?

Definition of NP-Completeness

Definition: Problem B is NP-hard if every problem in NP is polynomially reducible to B.

Definition: Problem B is NP-complete if:

- (I) B belongs to NP, and
- (2) B is NP-hard.

Proving a problem is NPcomplete

Technically, for condition (2) we have to show that every problem in NP is reducible to B. (yikes!) This sounds like a lot of work.

For the very first NP-complete problem (SAT) this had to be proved directly.

However, once we have one NP-complete problem, then we don't have to do this every time.

Why? Transitivity.

Re-stated Definition

Lemma: Problem B is NP-complete if:

(I) B belongs to NP, and

(2') A is polynomial-time reducible to B, for some problem A that is NP-complete.

That is, to show (2') given a new problem B, it is sufficient to show that SAT or any other NP-complete problem is polynomial-time reducible to B.

Usefulness of Transitivity

Now we only have to show $L' \leq_p L$, for some NP-complete problem L', in order to show that L is NP-hard. Why is this equivalent?

I) Since L' is NP-complete, we know that L' is NP-hard. That is:

 \forall L'' \in NP, we have L'' \leq_{p} L'

2) If we show L' \leq_{P} L, then by transitivity we know that: \forall L'' \in NP, we have L'' \leq_{P} L.

Thus L is NP-hard.

Ex: VertexCover is NP-complete

3-SAT is NP-complete (shown by S. Cook)
 3-SAT ≤_p VertexCover
 VertexCover is in NP (we showed this earlier)
 Therefore VertexCover is also NP-complete

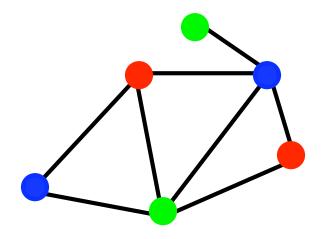
So, poly-time algorithm for VertexCover would give poly-time algs for everything in NP

NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).

Output: True iff there is an assignment of at most 3 colors to the vertices in G such that no two adjacent vertices have the same color.

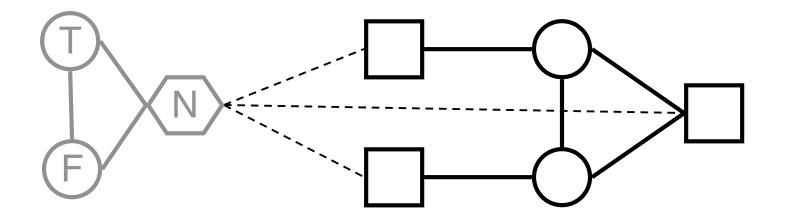
Example:



In NP? Exercise

A 3-Coloring Gadget:

In what ways can this be 3-colored?



A 3-Coloring Gadget: "Sort of an OR gate"

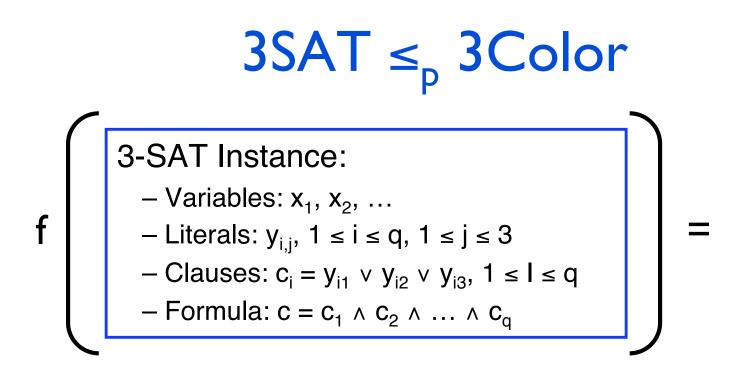
if any input is T, the output can be T if output is T, some input must be T

T N E output

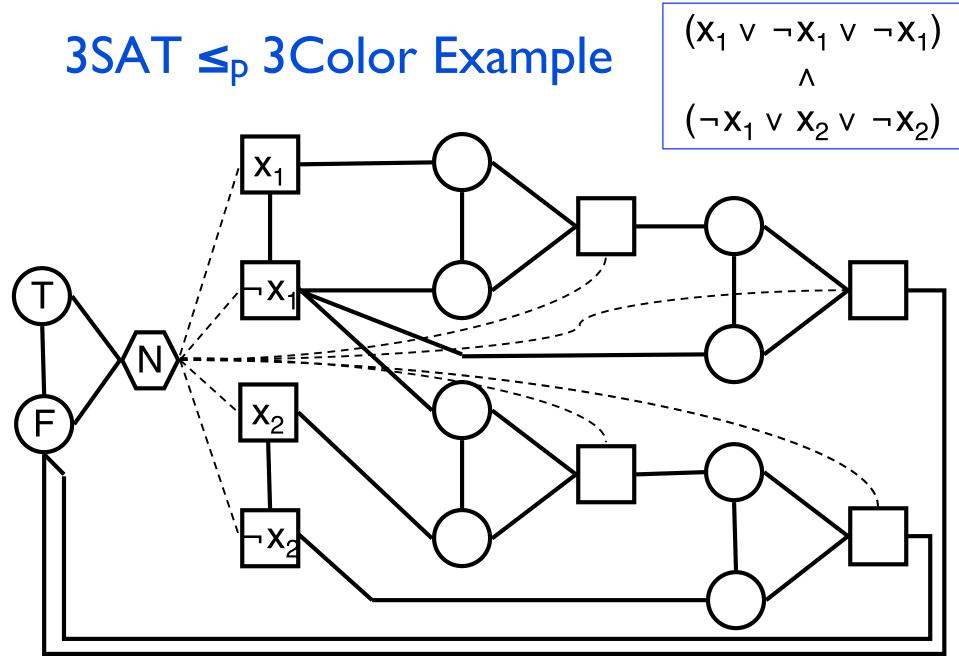
inputs

Exercise: find

all colorings



3Color Instance: -G = (V, E) -6q + 2n + 3 vertices -13q + 3n + 3 edges -(See Example for details)



6 q + 2 n + 3 vertices 13 q + 3 n + 3 edges

Correctness of " $3SAT \leq_p 3Coloring$ "

Summary of reduction function f:

Given formula, make G with T-F-N triangle, I pair of literal nodes per variable, 2 "or" gadgets per clause, connected as in example.

Note: again, f does not know or construct satisfying assignment or coloring.

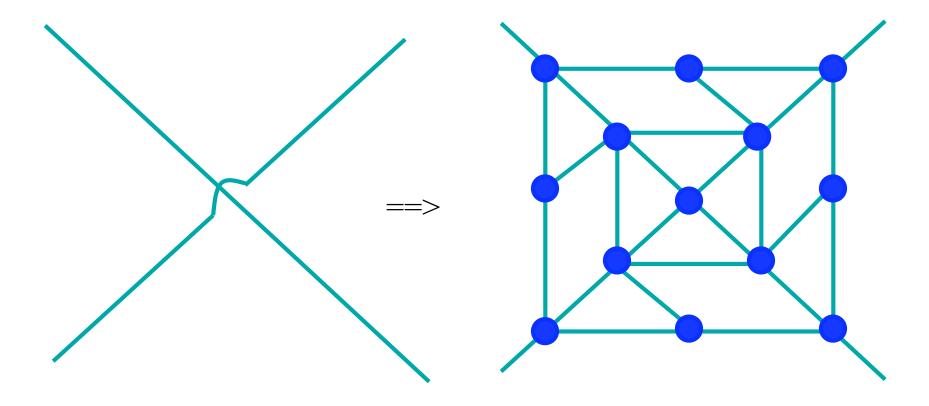
Correctness:

Show f poly time computable: A key point is that graph size is polynomial in formula size; graph looks messy, but pattern is basically straightforward.

Show c in 3-SAT iff f(c) is 3-colorable:

(⇒) Given an assignment satisfying c, color literals T/F as per assignment; can color "or" gadgets so output nodes are T since each clause is satisfied. (⇐) Given a 3-coloring of f(c), name colors T-N-F as in example. All square nodes are T or F (since all adjacent to N). Each variable pair (xi, ¬xi) must have complementary labels since they're adjacent. Define assignment based on colors of xi's. Clause "output" nodes must be colored T since they're adjacent to both N & F. By fact noted earlier, output can be T only if at least one input is T, hence it is a satisfying assignment.

Planar 3-Coloring is also NP-Complete



74

Common Errors in NP-completeness Proofs

Backwards reductions Bipartiteness \leq_p SAT is true, but not so useful. (XYZ \leq_p SAT shows XYZ in NP, does not show it's hard.)

Slooow Reductions

"Find a satisfying assignment, then output..."

Half Reductions

Delete dashed edges in 3Color reduction. It's still true that "c satisfiable \Rightarrow G is 3 colorable", but 3-colorings don't necessarily give good assignments.

Coping with NP-Completeness

Is your real problem a special subcase?

- E.g. 3-SAT is NP-complete, but 2-SAT is not;
- Ditto 3- vs 2-coloring

E.g. maybe you only need planar graphs, or degree 3 graphs, or ...

Guaranteed approximation good enough?

E.g. Euclidean TSP within 1.5 * Opt in poly time Clever exhaustive search may be fast enough in practice, e.g. Backtrack, Branch & Bound, pruning Heuristics – usually a good approximation and/or usually fast

NP-complete problem: TSP

Input: An undirected graph G=(V,E) with integer edge weights, and an integer b.

Output: YES iff there is a simple cycle in G passing through all vertices (once), with total cost \leq b.



TSP - Nearest Neighbor Heuristic

Recall NN Heuristic

Fact: NN tour can be about (log n) x opt, i.e.

$$\lim_{n\to\infty}\frac{NN}{OPT}\to\infty$$
(above example is not that bad)

2x Approximation to EuclideanTSP

A TSP tour visits all vertices, so contains a spanning tree, so TSP cost is > cost of min spanning tree. Find MST Find "DFS" Tour Shortcut TSP \leq shortcut \leq DFST = 2 * MST \leq 2 * TSP

Summary

Big-O – good

P – good

Exp – bad

Exp, but hints help? NP

NP-hard, NP-complete – bad (I bet)

To show NP-complete – reductions

NP-complete = hopeless? – no, but you need to lower your expectations: heuristics & approximations.

