
1

CSE 417
Introduction to Algorithms

Winter 2006

NP-Completeness
(Chapter 8)

2

Some Algebra Problems (Algorithmic)

Given positive integers a, b, c

Question 1: does there exist a positive integer x
such that ax = c ?

Question 2: does there exist a positive integer x
such that ax2 + bx = c ?

Question 3: do there exist positive integers x
and y such that ax2 + by = c ?

4

Some Problems

• Independent-Set:
– Given a graph G=(V,E) and an

integer k, is there a subset U of V
with |U| ≥ k such that no two vertices
in U are joined by an edge.

• Clique:
– Given a graph G=(V,E) and an

integer k, is there a subset U of V
with |U| ≥ k such that every pair of
vertices in U is joined by an edge.

5

A Brief History of Ideas

• From Classical Greece, if not earlier, "logical thought"
held to be a somewhat mystical ability

• Mid 1800's: Boolean Algebra and foundations of
mathematical logic created possible "mechanical"
underpinnings

• 1900: David Hilbert's famous speech outlines
program: mechanize all of mathematics?
http://mathworld.wolfram.com/HilbertsProblems.html

• 1930's: Gödel, Church, Turing, et al. prove it's
impossible

6

More History

• 1930/40's
– What is (is not) computable

• 1960/70's
– What is (is not) feasibly computable

– Goal – a (largely) technology independent theory
of time required by algorithms

– Key modeling assumptions/approximations
• Asymptotic (Big-O), worst case is revealing
• Polynomial, exponential time – qualitatively different

7

Polynomial vs
Exponential Growth

22n

2n/10

1000n2

22n

2n/10

1000n2

8

Next year's computer will be 2x faster. If I can
solve problem of size n0 today, how large a
problem can I solve in the same time next
year?

4140n0 n0 +12n
410400n0 n0+102n /10

1.25 x 104104n0 3√2 n0O(n3)
1.4 x 106106n0 √2 n0O(n2)
2 x 10121012n0 2n0O(n)

E.g. T=1012IncreaseComplexity

Another view of Poly vs Exp

9

Polynomial versus exponential

• We’ll say any algorithm whose run-time is
– polynomial is good
– bigger than polynomial is bad

• Note – of course there are exceptions:
– n100 is bigger than (1.001)n for most practical

values of n but usually such run-times don’t show
up

– There are algorithms that have run-times like
O(2n/22) and these may be useful for small input
sizes, but they're not too common either

10

Some Convenient Technicalities

• "Problem" – the general case
– Ex: The Clique Problem: Given a graph G and an

integer k, does G contain a k-clique?
• "Problem Instance" – the specific cases

– Ex: Does contain a 4-clique? (no)
– Ex: Does contain a 3-clique? (yes)

• Decision Problems – Just Yes/No answer
• Problems as Sets of "Yes" Instances

– Ex: CLIQUE = { (G,k) | G contains a k-clique }
• E.g., (, 4) ∉ CLIQUE
• E.g., (, 3) ∈ CLIQUE

11

Decision problems

• Computational complexity usually analyzed using
decision problems
– answer is just 1 or 0 (yes or no).

• Why?
– much simpler to deal with
– deciding whether G has a k-clique, is certainly no harder

than finding a k-clique in G, so a lower bound on deciding is
also a lower bound on finding

– Less important, but if you have a good decider, you can
often use it to get a good finder. (Ex.: does G still have a k-
clique after I remove this vertex?)

12

The class P

Definition: P = set of (decision) problems solvable by
computers in polynomial time.

i.e. T(n) = O(nk) for some fixed k.
These problems are sometimes called tractable
problems.

Examples: sorting, shortest path, MST, connectivity,
various dynamic programming – all of 417 up to now
except Change-Making/Stamp problem

13

Beyond P?

• There are many natural, practical problems
for which we don’t know any polynomial-time
algorithms

• e.g. CLIQUE:
– Given a weighted graph G and an integer k, does

there exist a k-clique in G?
• e.g. quadratic Diophantine equations:

– Given a, b, c ∈ N, ∃ x, y ∈ N s.t. ax2 + by = c?

14

Some Problems

• Independent-Set:
– Given a graph G=(V,E) and an

integer k, is there a subset U of V
with |U| ≥ k such that no two vertices
in U are joined by an edge.

• Clique:
– Given a graph G=(V,E) and an

integer k, is there a subset U of V
with |U| ≥ k such that every pair of
vertices in U is joined by an edge.

15

Some More Problems

• Euler Tour:
• Given a graph G=(V,E) is there a cycle traversing each edge

once.

• Hamilton Tour:
• Given a graph G=(V,E) is there a simple cycle of length |V|,

i.e., traversing each vertex once.

• TSP:
• Given a weighted graph G=(V,E,w) and an integer k, is there

a Hamilton tour of G with total weight ≤ k.

16

Satisfiability

• Boolean variables x1,...,xn
• taking values in {0,1}. 0=false, 1=true

• Literals
• xi or ¬xi for i=1,...,n

• Clause
• a logical OR of one or more literals
• e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

• CNF formula
• a logical AND of a bunch of clauses

17

Satisfiability

• CNF formula example
• (x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)

• If there is some assignment of 0’s and 1’s to
the variables that makes it true then we say
the formula is satisfiable
• the one above is, the following isn’t
• x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

• Satisfiability: Given a CNF formula F, is it
satisfiable?

18

Satisfiable?

(x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧
(x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬y ∨ z) ∧
(¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ y ∨ z) ∧
(x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

(x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧
(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) ∧
(¬x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧
(x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

19

More History – As of 1970

• Many of the above problems had been
studied for decades

• All had real, practical applications
• None had poly time algorithms; exponential

was best known

• But, it turns out they all have a very deep
similarity under the skin

20

Some Problem Pairs

• Euler Tour
• 2-SAT
• Min Cut
• Shortest Path

• Hamilton Tour
• 3-SAT
• Max Cut
• Longest Path

Similar pairs; seemingly
different computationally

Superficially different;
sim

ilar com
putationally

21

Common property of these problems

• There is a special piece of information, a short hint or
proof, that allows you to efficiently (in polynomial-
time) verify that the YES answer is correct. This hint
might be very hard to find

• e.g.
– TSP: the tour itself,
– Independent-Set, Clique: the set U
– Satisfiability: an assignment that makes F true.
– Quadratic Diophantine eqns: the numbers x & y.

22

The complexity class NP

NP consists of all decision problems where

• You can verify the YES answers efficiently (in
polynomial time) given a short (polynomial-size) hint

And

• No hint can fool your polynomial time verifier into
saying YES for a NO instance

• (implausible for all exponential time problems)

23

More Precise Definition of NP

• A decision problem is in NP iff there is a
polynomial time procedure v(.,.), and an
integer k such that
– for every YES problem instance x there is a hint h

with |h| ≤ |x|k such that v(x,h) = YES
and
– for every NO problem instance x there is no hint h

with |h| ≤ |x|k such that v(x,h) = YES
• “Hints” sometimes called “Certificates”

24

Example: CLIQUE is in NP

procedure v(x,h)
if

x is a well-formed representation of a graph G =
(V, E) and an integer k,

and
h is a well-formed representation of a k-vertex
subset U of V,

and
U is a clique in G,

then output "YES"
else output "I'm unconvinced"

25

Is it correct?

• For every x = (G,k) such that G contains a k-
clique, there is a hint h that will cause v(x,h)
to say YES, namely h = a list of the vertices in
such a k-clique

and
• No hint can fool v into saying yes if either x

isn't well-formed (the uninteresting case) or if
x = (G,k) but G does not have any cliques of
size k (the interesting case)

26

Another example: SAT ∈ NP

• Hint: the satisfying assignment A
• Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)

– Syntax: True iff F is a well-formed formula & A is a
truth-assignment to its variables

– Satisfies: plug A into F and evaluate
• Correctness:

– If F is satisfiable, it has some satisfying assignment
A, and we’ll recognize it

– If F is unsatisfiable, it doesn’t, and we won’t be
fooled

27

Keys to showing that
a problem is in NP

• What's the output? (must be YES/NO)
• What's the input? Which are YES?
• For every given YES input, is there a hint that

would help? Is it polynomial length?
– OK if some inputs need no hint

• For any given NO input, is there a hint that
would trick you?

28

Complexity Classes

P

NPNP = Polynomial-time
verifiable

P = Polynomial-time
solvable

29

!
"

#
$
%

&

k

n

Solving NP problems without hints

• The only obvious algorithm for most of these
problems is brute force:
– try all possible hints and check each one to see if

it works.
– Exponential time:

• 2n truth assignments for n variables
• n! possible TSP tours of n vertices
• possible k element subsets of n vertices
• etc.

• …and to date, every alg, even much less-obvious ones, are
slow, too

30

Problems in P can also be verified in
polynomial-time

Shortest Path: Given a graph G with edge lengths,
is there a path from s to t of length ≤ k?

Verify: Given a purported path from s to t, is it a
path, is its length ≤ k?

Small Spanning Tree: Given a weighted undirected
graph G, is there a spanning tree of weight ≤ k?

Verify: Given a purported spanning tree, is it a
spanning tree, is its weight ≤ k?

(But the hints aren’t really needed in these cases…)

31

P vs NP vs Exponential Time

• Theorem: Every problem in
NP can be solved
deterministically in
exponential time

• Proof: “hints” are only
nk long; try all 2nk

possibilities, say by
backtracking. If any
succeed, say YES; if
all fail, say NO.

nk

2nk

accept

Needle
in the

haystack

32

P and NP

NP

P

Exp

• Every problem in P is in NP
– one doesn’t even need a hint for

problems in P so just ignore any
hint you are given

• Every problem in NP is in
exponential time

• I.e., P ⊆ NP ⊆ Exp
• We know P ≠ Exp, so either P ≠NP,

or NP ≠ Exp (most likely both)

Worse…

33

P vs NP

• Theory
– P = NP ?
– Open Problem!
– I bet against it

• Practice
– Many interesting, useful,

natural, well-studied
problems known to be NP-
complete

– With rare exceptions, no
one routinely succeeds in
finding exact solutions to
large, arbitrary instances

34

A problem NOT in NP;
A bogus “proof” to the contrary

• EEXP = {(p,x) | program p accepts input x in
< 22|x| steps }

NON Theorem: EEXP in NP
• “Proof” 1: Hint = step-by-step trace of the

computation of p on x; verify step-by-step

35

More Connections

• Some Examples in NP
– Satisfiability
– Independent-Set
– Clique
– Vertex Cover

• All hard to solve; hints seem to help on all
• Very surprising fact:

– Fast solution to any gives fast solution to all!

36

The class NP-complete

We are pretty sure that no problem in NP – P
can be solved in polynomial time.

Non-Definition: NP-complete = the hardest
problems in the class NP. (Formal definition
later.)

Interesting fact: If any one NP-complete
problem could be solved in polynomial time,
then all NP problems could be solved in
polynomial time.

37

Complexity Classes

NP = Poly-time verifiable

P = Poly-time solvable

NP-Complete = “Hardest”
 problems in NP

NP

P

NP-Complete

38

The class NP-complete (cont.)

Thousands of important problems have been
shown to be NP-complete.

Fact (Dogma): The general belief is that there
is no efficient algorithm for any NP-complete
problem, but no proof of that belief is known.

Examples: SAT, clique, vertex cover,
Hamiltonian cycle, TSP, bin packing.

39

NP

P

NP-Complete

 sorting
 MST
 BCC
 max flow

 SAT
 clique
 vertex cover
 traveling salesman

Complexity Classes of Problems

40

Does P = NP?

• This is an open question.
• To show that P = NP, we have to show that

every problem that belongs to NP can be
solved by a polynomial time deterministic
algorithm.

• No one has shown this yet.
• (It seems unlikely to be true.)

41

Earlier in this class we learned techniques for
solving problems in P.

Question: Do we just throw up our hands if we
come across a problem we suspect not to be
in P?

Is all of this useful for anything?

42

Dealing with NP-complete Problems

What if I think my problem is not in P?

Here is what you might do:
1) Prove your problem is NP-hard or -complete

 (a common, but not guaranteed outcome)
2) Come up with an algorithm to solve the

problem usually or approximately.

43

Reductions: a useful tool

Definition: To reduce A to B means to solve A,
given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select (n/2)nd

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.

44

Reductions: Why useful

Definition: To reduce A to B means to solve A,
given a subroutine solving B.

Fast algorithm for B implies fast algorithm for A
(nearly as fast; takes some time to set up call, etc.)

If every algorithm for A is slow, then no
algorithm for B can be fast.

“complexity of A” ≤ “complexity of B” + “complexity of reduction”

45

SAT is NP-complete

Cook’s theorem: SAT is NP-complete

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF)

is satisfiable if there exists a truth assignment of
0’s and 1’s to its variables such that the value of
the expression is 1. Example:

S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)
Example above is satisfiable. (We can see this by

setting x=1, y=1 and z=0.)

46

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset C of V of

size ≤ k such that every edge in E is incident
to at least one vertex in C.

Example: Vertex cover of size ≤ 2.

In NP? Exercise

NP-complete problem: Vertex Cover

47

3SAT ≤p VertexCover

48

3SAT ≤p VertexCover

49

3SAT ≤p VertexCover

50

3SAT ≤p VertexCover

k=6

51

 (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)

k=6

x1 x1

x3

x2 ¬x2

¬x3 ¬x3

¬x1

x3

3SAT ≤p VertexCover

52

3SAT ≤p VertexCover

f =
3-SAT Instance:

– Variables: x1, x2, …
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

VertexCover Instance:
– k = 2q
– G = (V, E)
– V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }

– E = { ([i,j], [k,l]) | i = k or yij = ¬ykl }

53

3SAT ≤p VertexCover

k=6

54

Correctness of “3-SAT ≤p VertexCover”

Summary of reduction function f:
Given formula, make graph G with one group per clause, one node per
literal. Connect each to all nodes in same group, plus complementary
literals (x, ¬x). Output graph G plus integer k = 2 * number of clauses.
Note: f does not know whether formula is satisfiable or not; does not know
if G has k-cover; does not try to find satisfying assignment or cover.

Correctness:
1. Show f poly time computable: A key point is that graph size is polynomial

in formula size; mapping basically straightforward.
2. Show c in 3-SAT iff f(c)=(G,k) in VertexCover:

(⇒) Given an assignment satisfying c, pick one true literal per clause.
Add other 2 nodes of each triangle to cover. Show it is a cover: 2 per
triangle cover triangle edges; only true literals (but perhaps not all true
literals) uncovered, so at least one end of every (x, ¬x) edge is covered.
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps
partial) truth assignment since no (x, ¬x) pair uncovered. It satisfies c
since there is one uncovered node in each clause triangle (else some
other clause triangle has > 1 uncovered node, hence an uncovered edge.)

55

Utility of “3-SAT ≤p VertexCover”

• Suppose we had a fast algorithm
for VertexCover, then we could
get a fast algorithm for 3SAT:
– Given 3-CNF formula w, build Vertex

Cover instance y = f(w) as above, run the fast
VC alg on y; say “YES, w is satisfiable” iff VC alg
says “YES, y has a vertex cover of the given size”

• On the other hand, suppose no fast alg is
possible for 3SAT, then we know none is
possible for VertexCover either.

(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)

x1 x1

x3

x2 ¬x2

¬x3 ¬x3

¬x1

x3

56

“3-SAT ≤p VertexCover”
Retrospective

• Previous slide: two suppositions
• Somewhat clumsy to have to state things that

way.
• Alternative: abstract out the key elements,

give it a name (“polynomial time reduction”),
then properties like the above always hold.

57

Polynomial-Time Reductions

Definition: Let A and B be two problems.
 We say that A is polynomially reducible to B

if there exists a polynomial-time algorithm f
that converts each instance x of problem A to
an instance f(x) of B such that
 x is a YES instance of A iff
 f(x) is a YES instance of B.

x ∈ A ⇔ f(x) ∈ B

58

Polynomial-Time Reductions (cont.)

Define: A ≤p
 B “A is polynomial-time reducible to

B”, iff there is a polynomial-time computable
function f such that: x ∈ A ⇔ f(x) ∈ B

“complexity of A” ≤ “complexity of B” + “complexity of f”

(1) A ≤p
 B and B ∈ P ⇒ A ∈ P

(2) A ≤p
 B and A ∉ P ⇒ B ∉ P

(3) A ≤p
 B and B ≤p

 C ⇒ A ≤p
 C (transitivity)

polynomial

W
hy

 th
e

no
ta

tio
n?

59

Using an Algorithm for B to Solve A

Algorithm
to compute f

x Algorithm
to solve B

f(x) f(x) ∈ B? x ∈ A?

Algorithm to solve A

“If A ≤p
 B, and we can solve B in polynomial time,

then we can solve A in polynomial time also.”
Ex: suppose f takes O(n3) and algorithm for B takes O(n2).
How long does the above algorithm for A take?

60

Definition of NP-Completeness

Definition: Problem B is NP-hard if every
problem in NP is polynomially reducible to B.

Definition: Problem B is NP-complete if:
(1) B belongs to NP, and
(2) B is NP-hard.

61

Proving a problem is NP-complete

• Technically,for condition (2) we have to show
that every problem in NP is reducible to B.
(yikes!) This sounds like a lot of work.

• For the very first NP-complete problem
(SAT) this had to be proved directly.

• However, once we have one NP-complete
problem, then we don’t have to do this every
time.

• Why? Transitivity.

62

Re-stated Definition

Lemma: Problem B is NP-complete if:
(1) B belongs to NP, and
(2’) A is polynomial-time reducible to B, for

some problem A that is NP-complete.

That is, to show (2’) given a new problem B, it is
sufficient to show that SAT or any other
NP-complete problem is polynomial-time
reducible to B.

63

Usefulness of Transitivity

Now we only have to show L’ ≤p
 L , for some

NP-complete problem L’, in order to show that
L is NP-hard. Why is this equivalent?

1) Since L’ is NP-complete, we know that L’ is
NP-hard. That is:

∀ L’’∈ NP, we have L’’ ≤p
 L’

2) If we show L’ ≤p
 L, then by transitivity we know

that: ∀ L’’∈ NP, we have L’’ ≤p
 L.

Thus L is NP-hard.

64

Ex: VertexCover is NP-complete

• 3-SAT is NP-complete (shown by S. Cook)
• 3-SAT ≤p VertexCover
• VertexCover is in NP (we showed this earlier)
• Therefore VertexCover is also NP-complete

• So, poly-time algorithm for VertexCover
would give poly-time algs for everything in NP

65

NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).
Output: True iff there is an assignment of at

most 3 colors to the vertices in G such that no
two adjacent vertices have the same color.

Example:

In NP? Exercise

66

A 3-Coloring Gadget:

In what ways can this be 3-colored?

T

F
N

67

A 3-Coloring Gadget:
"Sort of an OR gate"

(1) if any input is T, the output can be T
(2) if output is T, some input must be T

T

F
N

output

inputs

Exercise: find
all colorings
of 5 nodes

68

3SAT ≤p 3Color

f =
3-SAT Instance:

– Variables: x1, x2, …
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

3Color Instance:
– G = (V, E)
– 6 q + 2 n + 3 vertices
– 13 q + 3 n + 3 edges
– (See Example for details)

x1

¬x1

x2

¬x2

T

F
N

 (x1 ∨ ¬x1 ∨ ¬x1)
∧

(¬x1 ∨ x2 ∨ ¬x2)
3SAT ≤p 3Color Example

6 q + 2 n + 3 vertices 13 q + 3 n + 3 edges

70

Correctness of “3-SAT ≤p 3Coloring”

Summary of reduction function f:
Given formula, make G with T-F-N triangle, 1 pair of literal nodes per
variable, 2 “or” gadgets per clause, connected as in example.
Note: again, f does not know or construct satisfying assignment or coloring.

Correctness:
1. Show f poly time computable: A key point is that graph size is polynomial in

formula size; graph looks messy, but pattern is basically straightforward.
2. Show c in 3-SAT iff f(c) is 3-colorable:

(⇒) Given an assignment satisfying c, color literals T/F as per assignment;
can color “or” gadgets so output nodes are T since each clause is satisfied.
(⇐) Given a 3-coloring of f(c), name colors T-N-F as in example. All square
nodes are T or F (since all adjacent to N). Each variable pair (xi, ¬xi) must
have complementary labels since they’re adjacent. Define assignment
based on colors of xi’s. Clause “output” nodes must be colored T since
they’re adjacent to both N & F. By fact noted earlier, output can be T only if
at least one input is T, hence it is a satisfying assignment.

71

Planar 3-Coloring is
also NP-Complete

==>

72

Common Errors in
NP-completeness Proofs

• Backwards reductions
Bipartiteness ≤p SAT is true, but not so useful.
(XYZ ≤p SAT shows XYZ in NP, does not show it’s hard.)

• Sloooow Reductions
“Find a satisfying assignment, then output…”

• Half Reductions
Delete dashed edges in 3Color reduction. It’s still true that
“c satisfiable ⇒ G is 3 colorable”, but 3-colorings don’t
necessarily give good assignments.

73

Coping with NP-Completeness

• Is your real problem a special subcase?
– E.g. 3-SAT is NP-complete, but 2-SAT is not;
– Ditto 3- vs 2-coloring
– E.g. maybe you only need planar graphs, or degree 3

graphs, or …
• Guaranteed approximation good enough?

– E.g. Euclidean TSP within 1.5 * Opt in poly time
• Clever exhaustive search may be fast enough in

practice, e.g. Backtrack, Branch & Bound, pruning
• Heuristics – usually a good approximation and/or

usually fast

74

NP-complete problem: TSP

Input: An undirected
graph G=(V,E) with
integer edge weights,
and an integer b.

Output: YES iff there is a
simple cycle in G
passing through all
vertices (once), with
total cost ≤ b.

5

3

4 6

47
2

5

8

 Example:
 b = 34

75

• A TSP tour visits all vertices, so contains a
spanning tree, so TSP cost is > cost of min
spanning tree.

• Find MST
• Find “DFS” Tour
• Shortcut
• TSP ≤ shortcut < DFST = 2 * MST < 2 * TSP

5

4

2
5

6

47

8

2x Approximation to EuclideanTSP

333

≤4+3

≤5+2+3+5

77

Summary

• Big-O – good
• P – good
• Exp – bad
• Exp, but hints help? NP
• NP-hard, NP-complete – bad (I bet)
• To show NP-complete – reductions
• NP-complete = hopeless? – no, but you need to

lower your expectations: heuristics & approximations.

NP

P

Exp
Worse…

NP-C

