CSE 417

Introduction to Algorithms Winter 2006

NP-Completeness
 (Chapter 8)

Some Algebra Problems (Algorithmic)

Given positive integers a, b, c
Question 1: does there exist a positive integer x such that $\mathrm{ax}=\mathrm{c}$?

Question 2: does there exist a positive integer x such that $a x^{2}+b x=c$?

Question 3: do there exist positive integers x and y such that $a x^{2}+b y=c$?

Some Problems

- Independent-Set:
- Given a graph $G=(V, E)$ and an integer k, is there a subset U of V with IUI $\geq k$ such that no two vertices in U are joined by an edge.
- Clique:
- Given a graph $G=(V, E)$ and an integer k, is there a subset U of V with IUI $\geq k$ such that every pair of vertices in U is joined by an edge.

A Brief History of Ideas

- From Classical Greece, if not earlier, "logical thought" held to be a somewhat mystical ability
- Mid 1800's: Boolean Algebra and foundations of mathematical logic created possible "mechanical" underpinnings
- 1900: David Hilbert's famous speech outlines program: mechanize all of mathematics?
http://mathworld.wolfram.com/HilbertsProblems.html
- 1930's: Gödel, Church, Turing, et al. prove it's impossible

More History

- 1930/40's
- What is (is not) computable
- 1960/70's
- What is (is not) feasibly computable
- Goal - a (largely) technology independent theory of time required by algorithms
- Key modeling assumptions/approximations
- Asymptotic (Big-O), worst case is revealing
- Polynomial, exponential time - qualitatively different

Polynomial vs Exponential Growth

Another view of Poly vs Exp

Next year's computer will be $2 x$ faster. If I can solve problem of size n_{0} today, how large a problem can I solve in the same time next year?

Complexity	Increase	E.g. T=1012	
$\mathrm{O}(\mathrm{n})$	$\mathrm{n}_{0} \rightarrow 2 \mathrm{n}_{0}$	10^{12}	2×10^{12}
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{n}_{0} \rightarrow \sqrt{ } 2 \mathrm{n}_{0}$	10^{6}	1.4×10^{6}
$\mathrm{O}\left(\mathrm{n}^{3}\right)$	$\mathrm{n}_{0} \rightarrow \sqrt[3]{ } 2 \mathrm{n}_{0}$	10^{4}	1.25×10^{4}
$2^{\mathrm{n} / 10}$	$\mathrm{n}_{0} \rightarrow \mathrm{n}_{0}+10$	400	410
2^{n}	$n_{0} \rightarrow \mathrm{n}_{0}+1$	40	41

Polynomial versus exponential

- We'll say any algorithm whose run-time is
- polynomial is good
- bigger than polynomial is bad
- Note - of course there are exceptions:
$-\mathrm{n}^{100}$ is bigger than $(1.001)^{\mathrm{n}}$ for most practical values of n but usually such run-times don't show up
- There are algorithms that have run-times like $O\left(2^{n / 22}\right)$ and these may be useful for small input sizes, but they're not too common either

Some Convenient Technicalities

- "Problem" - the general case
- Ex: The Clique Problem: Given a graph G and an integer k , does G contain a k-clique?
- "Problem Instance" - the specific cases
- Ex: Does contain a 4-clique? (no)
- Ex: Does contain a 3-clique? (yes)
- Decision Problems - Just Yes/No answer
- Problems as Sets of "Yes" Instances
- Ex: CLIQUE $=\{(G, k) \mid G$ contains a k-clique $\}$
- E.g., ($\sim, 4) \notin$ CLIQUE
- E.g., ($\sim, 3) \in$ CLIQUE

Decision problems

- Computational complexity usually analyzed using decision problems
- answer is just 1 or 0 (yes or no).
- Why?
- much simpler to deal with
- deciding whether G has a k-clique, is certainly no harder than finding a k-clique in G, so a lower bound on deciding is also a lower bound on finding
- Less important, but if you have a good decider, you can often use it to get a good finder. (Ex.: does G still have a kclique after I remove this vertex?)

The class P

Definition: $P=$ set of (decision) problems solvable by computers in polynomial time.
i.e. $T(n)=O\left(n^{k}\right)$ for some fixed k.

These problems are sometimes called tractable problems.

Examples: sorting, shortest path, MST, connectivity, various dynamic programming - all of 417 up to now except Change-Making/Stamp problem

Beyond \mathbf{P} ?

- There are many natural, practical problems for which we don't know any polynomial-time algorithms
- e.g. CLIQUE:
- Given a weighted graph G and an integer k, does there exist a k-clique in G ?
- e.g. quadratic Diophantine equations:
- Given $a, b, c \in N, \exists x, y \in N$ s.t. $a x^{2}+b y=c$?

Some Problems

- Independent-Set:
- Given a graph $G=(V, E)$ and an integer k, is there a subset U of V with IUI $\geq k$ such that no two vertices in U are joined by an edge.
- Clique:
- Given a graph $G=(V, E)$ and an integer k, is there a subset U of V with IUI $\geq k$ such that every pair of vertices in U is joined by an edge.

Some More Problems

- Euler Tour:
- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is there a cycle traversing each edge once.
- Hamilton Tour:
- Given a graph $G=(V, E)$ is there a simple cycle of length IVI, i.e., traversing each vertex once.
- TSP:
- Given a weighted graph $G=(V, E, w)$ and an integer k, is there a Hamilton tour of G with total weight $\leq k$.

Satisfiability

- Boolean variables x_{1}, \ldots, x_{n}
- taking values in $\{0,1\}$. $0=$ false, $1=$ true
- Literals
- x_{i} or $\neg x_{i}$ for $i=1, \ldots, n$
- Clause
- a logical OR of one or more literals
- e.g. ($\mathrm{x}_{1} \vee \neg \mathrm{x}_{3} \vee \mathrm{x}_{7} \vee \mathrm{x}_{12}$)
- CNF formula
- a logical AND of a bunch of clauses

Satisfiability

- CNF formula example
- ($\mathrm{x} 1 \vee \neg \mathrm{x} 3 \vee \mathrm{x} 7$) $\wedge(\neg \mathrm{x} 1 \vee \neg \mathrm{x} 4 \vee \mathrm{x} 5 \vee \neg \mathrm{x} 7)$
- If there is some assignment of 0 's and 1 's to the variables that makes it true then we say the formula is satisfiable
- the one above is, the following isn't
- $\mathrm{x} 1 \wedge(\neg \mathrm{x} 1 \vee \mathrm{x} 2) \wedge(\neg \mathrm{x} 2 \vee \mathrm{x} 3) \wedge \neg \mathrm{x} 3$
- Satisfiability: Given a CNF formula F, is it satisfiable?

Satisfiable?

$(x \quad \vee \quad y \quad \vee \quad z) \wedge(\neg x \quad \vee \quad y \vee \neg z) \wedge$ $(x \vee \vee \neg \vee z) \wedge(\neg x \vee \neg y \vee \quad z) \wedge$ $(\neg x \vee \neg y \vee \neg z) \wedge(x \vee y \vee z) \wedge$ $(x \vee \neg y \vee z) \wedge(x \vee y \vee \neg)$
$(x \quad \vee \quad y \quad \vee \quad z) \wedge(\neg x \quad \vee \quad y \vee \neg z) \wedge$ $(x \quad \vee \neg y \vee \neg z) \wedge(\neg x \quad \vee \neg y \vee \quad z) \wedge$ $(\neg x \vee \vee y \vee \neg z) \wedge(\neg x \vee y \vee z) \wedge$ $(x \quad \vee \neg y \vee z) \wedge(x \vee y \vee \neg)$

More History - As of 1970

- Many of the above problems had been studied for decades
- All had real, practical applications
- None had poly time algorithms; exponential was best known
- But, it turns out they all have a very deep similarity under the skin

Some Problem Pairs

- Euler Tour
- 2-SAT
- Min Cut
- Shortest Path
- Hamilton Tour
- 3-SAT
- Max Cut
- Longest Path

Common property of these problems

- There is a special piece of information, a short hint or proof, that allows you to efficiently (in polynomialtime) verify that the YES answer is correct. This hint might be very hard to find
- e.g.
- TSP: the tour itself,
- Independent-Set, Clique: the set U
- Satisfiability: an assignment that makes F true.
- Quadratic Diophantine eqns: the numbers x \& y.

The complexity class NP

NP consists of all decision problems where

- You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint

And

- No hint can fool your polynomial time verifier into saying YES for a NO instance
- (implausible for all exponential time problems)

More Precise Definition of NP

- A decision problem is in NP iff there is a polynomial time procedure $\mathrm{v}(.,$.$) , and an$ integer k such that
- for every YES problem instance x there is a hint h with $\mathrm{lh}\left|\leq|x|^{k}\right.$ such that $v(x, h)=$ YES
and
- for every NO problem instance x there is no hint h with $\mathrm{lh}\left|\leq|x|^{k}\right.$ such that $\mathrm{v}(\mathrm{x}, \mathrm{h})=$ YES
- "Hints" sometimes called "Certificates"

Example: CLIQUE is in NP

procedure $\mathrm{v}(\mathrm{x}, \mathrm{h})$
if
x is a well-formed representation of a graph $G=$
(V, E) and an integer k,
and
h is a well-formed representation of a k-vertex subset U of V ,
and
U is a clique in G ,
then output "YES"
else output "I'm unconvinced"

Is it correct?

- For every $x=(G, k)$ such that G contains a k clique, there is a hint h that will cause $v(x, h)$ to say YES, namely $h=a$ list of the vertices in such a k-clique
and
- No hint can fool v into saying yes if either x isn't well-formed (the uninteresting case) or if $x=(G, k)$ but G does not have any cliques of size k (the interesting case)

Another example: $\mathrm{SAT} \in \mathrm{NP}$

- Hint: the satisfying assignment A
- Verifier: $\mathrm{v}(\mathrm{F}, \mathrm{A})=\operatorname{syntax}(\mathrm{F}, \mathrm{A})$ \& \& satisfies (F, A)
- Syntax: True iff F is a well-formed formula \& A is a truth-assignment to its variables
- Satisfies: plug A into F and evaluate
- Correctness:
- If F is satisfiable, it has some satisfying assignment A, and we'll recognize it
- If F is unsatisfiable, it doesn't, and we won't be fooled

Keys to showing that a problem is in NP

- What's the output? (must be YES/NO)
- What's the input? Which are YES?
- For every given YES input, is there a hint that would help? Is it polynomial length?
- OK if some inputs need no hint
- For any given NO input, is there a hint that would trick you?

Complexity Classes

NP = Polynomial-time verifiable

P = Polynomial-time solvable

Solving NP problems without hints

- The only obvious algorithm for most of these problems is brute force:
- try all possible hints and check each one to see if it works.
- Exponential time:
- 2^{n} truth assignments for n variables
- n ! possible TSP tours of n vertices
- $\binom{n}{k}$ possible k element subsets of n vertices
- etc.
- ...and to date, every alg, even much less-obvious ones, are slow, too

Problems in P can also be verified in polynomial-time

Shortest Path: Given a graph G with edge lengths, is there a path from s to t of length $\leq k$?
Verify: Given a purported path from s to t, is it a path, is its length $\leq k$?

Small Spanning Tree: Given a weighted undirected graph G, is there a spanning tree of weight $\leq k$?
Verify: Given a purported spanning tree, is it a spanning tree, is its weight $\leq k$?
(But the hints aren't really needed in these cases...)

P vs NP vs Exponential Time

- Theorem: Every problem in NP can be solved deterministically in exponential time
- Proof: "hints" are only n^{k} long; try all $2^{\mathrm{n}^{\mathrm{k}}}$ possibilities, say by backtracking. If any succeed, say YES; if all fail, say NO.

P and NP

- Every problem in P is in NP
- one doesn't even need a hint for problems in P so just ignore any hint you are given
- Every problem in NP is in exponential time
- l.e., $\mathrm{P} \subseteq \mathrm{NP} \subseteq \operatorname{Exp}$
- We know $P \neq E x p$, so either $P \neq N P$,

- Theory
$-\mathrm{P}=\mathrm{NP}$?
- Open Problem!
- I bet against it
- Practice
- Many interesting, useful, natural, well-studied problems known to be NPcomplete
- With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances

A problem NOT in NP; A bogus "proof" to the contrary

- EEXP $=\{(p, x) \mid$ program p accepts input x in $<2^{2^{|x|}}$ steps $\}$

NON Theorem: EEXP in NP

- "Proof" 1: Hint = step-by-step trace of the computation of p on x; verify step-by-step

More Connections

- Some Examples in NP
- Satisfiability
- Independent-Set
- Clique
- Vertex Cover
- All hard to solve; hints seem to help on all
- Very surprising fact:
- Fast solution to any gives fast solution to all!

The class NP-complete

We are pretty sure that no problem in NP - P can be solved in polynomial time.
Non-Definition: NP-complete = the hardest problems in the class NP. (Formal definition later.)
Interesting fact: If any one NP-complete problem could be solved in polynomial time, then all NP problems could be solved in polynomial time.

Complexity Classes

NP = Poly-time verifiable
$\mathbf{P}=$ Poly-time solvable

NP-Complete = "Hardest" problems in NP

The class NP-complete (cont.)

Thousands of important problems have been shown to be NP-complete.

Fact (Dogma): The general belief is that there is no efficient algorithm for any NP-complete problem, but no proof of that belief is known.

Examples: SAT, clique, vertex cover, Hamiltonian cycle, TSP, bin packing.

Complexity Classes of Problems

Does $\mathrm{P}=\mathrm{NP}$?

- This is an open question.
- To show that $\mathbf{P}=\mathbf{N P}$, we have to show that every problem that belongs to NP can be solved by a polynomial time deterministic algorithm.
- No one has shown this yet.
- (It seems unlikely to be true.)

Is all of this useful for anything?

Earlier in this class we learned techniques for solving problems in \mathbf{P}.

Question: Do we just throw up our hands if we come across a problem we suspect not to be in \mathbf{P} ?

Dealing with NP-complete Problems

What if I think my problem is not in P ?

Here is what you might do:

1) Prove your problem is NP-hard or -complete
(a common, but not guaranteed outcome)
2) Come up with an algorithm to solve the problem usually or approximately.

Reductions: a useful tool

Definition: To reduce A to B means to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select ($\mathrm{n} / 2)^{\text {nd }}$
Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat
Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.

Reductions: Why useful

Definition: To reduce A to B means to solve A, given a subroutine solving B.

Fast algorithm for B implies fast algorithm for A (nearly as fast; takes some time to set up call, etc.)

If every algorithm for A is slow, then no algorithm for B can be fast.

$$
\text { "complexity of A" } \leq \text { "complexity of B" + "complexity of reduction" }
$$

SAT is NP-complete

Cook's theorem: SAT is NP-complete

Satisfiability (SAT)

A Boolean formula in conjunctive normal form (CNF) is satisfiable if there exists a truth assignment of 0 's and 1's to its variables such that the value of the expression is 1. Example:

$$
S=(x+y+\neg z) \cdot(\neg x+y+z) \cdot(\neg x+\neg y+\neg z)
$$

Example above is satisfiable. (We can see this by setting $x=1, y=1$ and $z=0$.)

NP-complete problem: Vertex Cover

Input: Undirected graph $G=(V, E)$, integer k.
Output: True iff there is a subset C of V of size $\leq k$ such that every edge in E is incident to at least one vertex in C.

Example: Vertex cover of size ≤ 2.

In NP? Exercise

$$
\frac{\text { ans }}{20}
$$

$$
\frac{80}{80}
$$

$$
\frac{8}{80}
$$

$3 S A T \leq p$ VertexCover

3 SAT \leq_{p} VertexCover

$$
\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3}\right)
$$

3 SAT \leq_{p} VertexCover

3-SAT Instance:

- Variables: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$
- Literals: $y_{i, j}, 1 \leq i \leq q, 1 \leq j \leq 3$
- Clauses: $c_{i}=y_{i 1} \vee y_{i 2} \vee y_{i 3}, 1 \leq \mathrm{l} \leq \mathrm{q}$
- Formula: $c=c_{1} \wedge c_{2} \wedge \ldots \wedge c_{q}$

VertexCover Instance:
$-k=2 q$
$-G=(V, E)$
$-V=\{[i, j] \mid 1 \leq i \leq q, 1 \leq j \leq 3\}$
$-E=\left\{([i, j],[k, I]) \mid i=k\right.$ or $\left.y_{i j}=\neg y_{k l}\right\}$
$3 S A T \leq p$ VertexCover

Correctness of " 3 -SAT $\mathbf{s p}_{\mathrm{p}}$ VertexCover"

Summary of reduction function f:
Given formula, make graph G with one group per clause, one node per literal. Connect each to all nodes in same group, plus complementary literals $(x, \neg x)$. Output graph G plus integer $k=2$ * number of clauses.
Note: f does not know whether formula is satisfiable or not; does not know if G has k-cover; does not try to find satisfying assignment or cover.
Correctness:

1. Show f poly time computable: A key point is that graph size is polynomial in formula size; mapping basically straightforward.
2. Show c in 3-SAT iff $\mathrm{f}(\mathrm{c})=(\mathrm{G}, \mathrm{k})$ in VertexCover: (\Rightarrow) Given an assignment satisfying c, pick one true literal per clause. Add other 2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle edges; only true literals (but perhaps not all true literals) uncovered, so at least one end of every ($x, \neg x$) edge is covered. (\Leftarrow) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) truth assignment since no ($x, \neg x$) pair uncovered. It satisfies c since there is one uncovered node in each clause triangle (else some other clause triangle has >1 uncovered node, hence an uncovered edge.)

Utility of " 3 -SAT \leq_{p} VertexCover"

- Suppose we had a fast algorithm for VertexCover, then we could get a fast algorithm for 3SAT:
- Given 3-CNF formula w, build Vertex

Cover instance $y=f(w)$ as above, run the fast VC alg on y; say "YES, w is satisfiable" iff VC alg says "YES, y has a vertex cover of the given size"

- On the other hand, suppose no fast alg is possible for 3SAT, then we know none is possible for VertexCover either.

" 3 -SAT \leq p VertexCover" Retrospective

- Previous slide: two suppositions
- Somewhat clumsy to have to state things that way.
- Alternative: abstract out the key elements, give it a name ("polynomial time reduction"), then properties like the above always hold.

Polynomial-Time Reductions

Definition: Let \boldsymbol{A} and \boldsymbol{B} be two problems. We say that \boldsymbol{A} is polynomially reducible to \boldsymbol{B} if there exists a polynomial-time algorithm \boldsymbol{f} that converts each instance x of problem \boldsymbol{A} to an instance $f(x)$ of \mathbf{B} such that
x is a YES instance of \boldsymbol{A} iff $f(x)$ is a YES instance of \boldsymbol{B}.

$$
x \in A \Leftrightarrow f(x) \in B
$$

Polynomial-Time Reductions (cont.)

Define: $\boldsymbol{A} \leq \mathrm{p} \boldsymbol{B}$ " A is polynomial-time reducible to B ", iff there is a polynomial-time computable fynction f such that: $x \in A \Leftrightarrow f(x) \in B$
"complexity of A" \leq "complexity of B" + "complexity of f"
(1) $\boldsymbol{A} \leq p \boldsymbol{B}$ and $\boldsymbol{B} \in \boldsymbol{P} \Rightarrow \boldsymbol{A} \in P$
polynomial
(2) $\boldsymbol{A} \leq \mathrm{p} \boldsymbol{B}$ and $\boldsymbol{A} \notin \boldsymbol{P} \Rightarrow \boldsymbol{B} \notin \boldsymbol{P}$
(3) $\boldsymbol{A} \leq_{\mathrm{p}} \boldsymbol{B}$ and $\boldsymbol{B} \leq_{\mathrm{p}} \boldsymbol{C} \Rightarrow \boldsymbol{A} \leq_{\mathrm{p}} \boldsymbol{C}$ (transitivity)

Using an Algorithm for \boldsymbol{B} to Solve \boldsymbol{A}

Algorithm to solve A

"If $A \leq p B$, and we can solve B in polynomial time, then we can solve A in polynomial time also."

Ex: suppose f takes $O\left(\mathrm{n}^{3}\right)$ and algorithm for B takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$. How long does the above algorithm for A take?

Definition of NP-Completeness

Definition: Problem B is NP-hard if every problem in NP is polynomially reducible to B.

Definition: Problem B is NP-complete if:
(1) B belongs to NP, and
(2) B is NP-hard.

Proving a problem is NP-complete

- Technically,for condition (2) we have to show that every problem in NP is reducible to B. (yikes!) This sounds like a lot of work.
- For the very first NP-complete problem (SAT) this had to be proved directly.
- However, once we have one NP-complete problem, then we don't have to do this every time.
- Why? Transitivity.

Re-stated Definition

Lemma: Problem B is NP-complete if:

(1) B belongs to NP, and (2') A is polynomial-time reducible to B, for some problem A that is NP-complete.

That is, to show (2^{\prime}) given a new problem B, it is sufficient to show that SAT or any other NP-complete problem is polynomial-time reducible to B.

Usefulness of Transitivity

Now we only have to show L ' $\leq p$, for some NP-complete problem L^{\prime}, in order to show that L is NP-hard. Why is this equivalent?

1) Since L^{\prime} is $N P$-complete, we know that L^{\prime} is $N P$-hard. That is:

$$
\forall L^{\prime \prime} \in N P, \text { we have } L^{\prime \prime} \leq_{p} L^{\prime}
$$

2) If we show $L^{\prime} \leq p$, , then by transitivity we know that: $\forall L " \in N P$, we have $L " \leq p L$.
Thus L is NP-hard.

Ex: VertexCover is NP-complete

- 3-SAT is NP-complete (shown by S. Cook)
- 3-SAT $\leq p$ VertexCover
- VertexCover is in NP (we showed this earlier)
- Therefore VertexCover is also NP-complete
- So, poly-time algorithm for VertexCover would give poly-time algs for everything in NP

NP-complete problem: 3-Coloring

Input: An undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
Output: True iff there is an assignment of at most 3 colors to the vertices in G such that no two adjacent vertices have the same color.

Example:

In NP? Exercise

A 3-Coloring Gadget:

In what ways can this be 3-colored?

A 3-Coloring Gadget: "Sort of an OR gate"

(1) if any input is T , the output can be T
(2) if output is T, some input must be T

Exercise: find all colorings of 5 nodes

inputs

3 SAT \leq p 3 Color

> 3Color Instance:
> $\quad-\mathrm{G}=(\mathrm{V}, \mathrm{E})$
> $-6 \mathrm{q}+2 \mathrm{n}+3$ vertices
> $-13 \mathrm{q}+3 \mathrm{n}+3$ edges
> - (See Example for details)

3SAT \leq p 3Color Example

Correctness of " 3 -SAT \leq p 3 Coloring"

Summary of reduction function f:
Given formula, make G with T-F-N triangle, 1 pair of literal nodes per variable, 2 "or" gadgets per clause, connected as in example.
Note: again, f does not know or construct satisfying assignment or coloring.
Correctness:

1. Show f poly time computable: A key point is that graph size is polynomial in formula size; graph looks messy, but pattern is basically straightforward.
2. Show c in 3-SAT iff $f(c)$ is 3-colorable:
(\Rightarrow) Given an assignment satisfying c, color literals T/F as per assignment;
can color "or" gadgets so output nodes are T since each clause is satisfied. (\Leftarrow) Given a 3 -coloring of $f(\mathrm{c})$, name colors T-N-F as in example. All square nodes are T or F (since all adjacent to N). Each variable pair ($\mathrm{x}_{\mathrm{i}}, \neg \mathrm{x}_{\mathrm{i}}$) must have complementary labels since they're adjacent. Define assignment based on colors of x_{i} 's. Clause "output" nodes must be colored T since they're adjacent to both N \& F. By fact noted earlier, output can be T only if at least one input is T , hence it is a satisfying assignment.

Planar 3-Coloring is also NP-Complete

Common Errors in

NP-completeness Proofs

- Backwards reductions

Bipartiteness \leq p SAT is true, but not so useful. ($\mathrm{XYZ} \leq$ p SAT shows XYZ in NP, does not show it's hard.)

- Sloooow Reductions
"Find a satisfying assignment, then output..."
- Half Reductions

Delete dashed edges in 3Color reduction. It's still true that "c satisfiable $\Rightarrow \mathrm{G}$ is 3 colorable", but 3-colorings don't necessarily give good assignments.

Coping with NP-Completeness

- Is your real problem a special subcase?
- E.g. 3-SAT is NP-complete, but 2-SAT is not;
- Ditto 3-vs 2-coloring
- E.g. maybe you only need planar graphs, or degree 3 graphs, or ...
- Guaranteed approximation good enough?
- E.g. Euclidean TSP within 1.5 * Opt in poly time
- Clever exhaustive search may be fast enough in practice, e.g. Backtrack, Branch \& Bound, pruning
- Heuristics - usually a good approximation and/or usually fast

NP-complete problem: TSP

Input: An undirected graph $G=(V, E)$ with integer edge weights, and an integer b.

Output: YES iff there is a simple cycle in G passing through all vertices (once), with

Example:
b $=34$
 total cost $\leq \mathrm{b}$.

2x Approximation to EuclideanTSP

- A TSP tour visits all vertices, so contains a spanning tree, so TSP cost is > cost of min spanning tree.
- Find MST
- Find "DFS" Tour
- Shortcut

- TSP \leq shortcut $<$ DFST $=2$ * MST < 2 * TSP

Summary

- Big-O - good
- P - good
- Exp - bad
- Exp, but hints help? NP

- NP-hard, NP-complete - bad (I bet)
- To show NP-complete - reductions
- NP-complete = hopeless? - no, but you need to lower your expectations: heuristics \& approximations.

