CSE 421:

 Introduction to Algorithms

 Introduction to Algorithms}

Dynamic Programming

"Dynamic Programming"

Program - A plan or procedure for dealing with some matter - Webster's New World Dictionary

Dynamic Programming

Outline:

- Example 1 - Licking Stamps
- General Principles
- Example 2 - Knapsack (§ 5.10)
- Example 3 - Sequence Comparison (§ 6.8)

Licking Stamps

- Given:
- Large supply of $5 ¢, 4 ¢$, and $1 ¢$ stamps
- An amount N
- Problem: choose fewest stamps totaling N

How to Lick 27 ${ }^{\text {¢ }}$

\# of 5¢ Stamps	\# of 4¢ Stamps	\# of 1¢ Stamps	Total Number
5	0	2	7
4	1	3	8
3	3	0	6

Moral: Greed doesn’t pay

A Simple Algorithm

At most N stamps needed, etc.
for $\mathrm{a}=0, \ldots, \mathrm{~N}$ \{ for $\mathrm{b}=0, \ldots, \mathrm{~N}\{$ for $\mathrm{c}=0, \ldots, \mathrm{~N}$ \{
if $(5 a+4 b+c==N \& \& a+b+c$ is new min) \{retain (a,b,c);\}\}\}
output retained triple;
Time: $\mathrm{O}\left(\mathrm{N}^{3}\right)$
(Not too hard to see some optimizations, but we're after bigger fish...)

Better Idea

Theorem: If last stamp licked in an optimal solution has value v , then previous stamps form an optimal solution for $\mathrm{N}-\mathrm{v}$.
Proof: if not, we could improve the solution for N by using opt for $\mathrm{N}-\mathrm{v}$.

$$
M(i)=\min \left\{\begin{array}{ll}
0 & i=0 \\
1+M(i-5) & i \geq 5 \\
1+M(i-4) & i \geq 4 \\
1+M(i-1) & i \geq 1
\end{array}\right\} \quad \begin{aligned}
& \text { where } M(i)=\text { min number } \\
& \text { of stamps totaling ic }
\end{aligned}
$$

New Idea: Recursion

Time: $>3^{\text {N/5 }}$

Another New Idea:
 Avoid Recomputation

Tabulate values of solved subproblems

- Top-down: "memoization"
- Bottom up:

$$
\text { for } \mathrm{i}=0, \ldots, \mathrm{~N} \text { do } \quad M[i]=\min \left\{\begin{array}{ll}
0 & i=0 \\
1+M[i-5] & i \geq 5 \\
1+M M[i-4] & i \geq 4 \\
1+M[i-1] & i \geq 1
\end{array}\right\} \text {; }
$$

Time: $\mathrm{O}(\mathrm{N})$

Finding How Many Stamps

Finding Which Stamps: Trace-Back

Complexity Note

- $\mathrm{O}(\mathrm{N})$ is better than $\mathrm{O}\left(\mathrm{N}^{3}\right)$ or $\mathrm{O}\left(3^{\mathrm{N} / 5}\right)$
- But still exponentia/ in input size (log N bits)
(E.g., miserably slow if N is 64 bits $-\mathrm{c} \cdot 2^{64}$ steps for 64 bit input.)
- Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in general. See "NP-Completeness" later

Elements of Dynamic Programming

- What feature did we use?
- What should we look for to use again?
- "Optimal Substructure"

Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

- "Repeated Subproblems"

The same subproblems arise in various ways

