CSE 421: Introduction to Algorithms

Dynamic Programming

"Dynamic Programming"

Program — A plan or procedure for dealing with some matter — Webster's New World Dictionary

Dynamic Programming

Outline:

- Example 1 Licking Stamps
- General Principles
- Example 2 Knapsack (§ 5.10)
- Example 3 Sequence Comparison (§ 6.8)

Licking Stamps

- Given:
 - Large supply of 5¢, 4¢, and 1¢ stamps
 - An amount N
- Problem: choose fewest stamps totaling N

How to Lick 27¢

# of 5¢	# of 4¢	# of 1¢	Total
Stamps	Stamps	Stamps	Number
5	0	2	7
4	1	3	8
3	3	0	6

Moral: Greed doesn't pay

A Simple Algorithm

At most N stamps needed, etc.

• Time: O(N³)
(Not too hard to see some optimizations, but we're after bigger fish...)

Better Idea

Theorem: If last stamp licked in an optimal solution has value v, then previous stamps form an optimal solution for N-v.

Proof: if not, we could improve the solution for N by using opt for N-v.

$$M(i) = \min \begin{cases} 0 & i=0 \\ 1+M(i-5) & i \ge 5 \\ 1+M(i-4) & i \ge 4 \\ 1+M(i-1) & i \ge 1 \end{cases} \text{ where } M(i) = \min \text{ number of stamps totaling } i \not c$$

New Idea: Recursion

Time: $> 3^{N/5}$

Another New Idea: Avoid Recomputation

- Tabulate values of solved subproblems
 - Top-down: "memoization"
 - Bottom up:

for i = 0, ..., N do
$$M[i] = \min \begin{cases} 0 & i=0 \\ 1+M[i-5] & i \ge 5 \\ 1+M[i-4] & i \ge 4 \\ 1+M[i-1] & i \ge 1 \end{cases}$$
;

Time: O(N)

Finding How Many Stamps

1+Min(3,1,3)=2

Finding Which Stamps: Trace-Back

$$1 + Min(3,1,3) = 2$$

Complexity Note

- O(N) is better than $O(N^3)$ or $O(3^{N/5})$
- But still exponential in input size (log N bits)

(E.g., miserably slow if N is 64 bits – $c \cdot 2^{64}$ steps for 64 bit input.)

 Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in general. See "NP-Completeness" later

Elements of Dynamic Programming

- What feature did we use?
- What should we look for to use again?
- "Optimal Substructure"

Optimal solution contains optimal subproblems A non-example: min (number of stamps mod 2)

"Repeated Subproblems"

The same subproblems arise in various ways