CSE 421: Introduction to Algorithms

Dynamic Programming

"Dynamic Programming"

Program — A plan or procedure for dealing with some matter – Webster's New World Dictionary

2

Dynamic Programming

- Outline:
 - Example 1 Licking Stamps
 - General Principles
 - Example 2 Knapsack (§ 5.10)
 - Example 3 Sequence Comparison (§ 6.8)

Licking Stamps

- · Given:
 - Large supply of 5¢, 4¢, and 1¢ stamps
 - An amount N
- · Problem: choose fewest stamps totaling N

.

How to Lick 27¢

# of 5¢	# of 4¢	# of 1¢	Total
Stamps	Stamps	Stamps	Number
•	•	•	
5	0	2	7
4	1	3	8
3	3	0	6
_	_		

Moral: Greed doesn't pay

A Simple Algorithm

At most N stamps needed, etc.

$$\begin{array}{l} \text{for a = 0, ..., N \{} \\ \text{for b = 0, ..., N \{} \\ \text{for c = 0, ..., N \{} \\ \text{if (5a+4b+c == N \&\& a+b+c is new min)} \\ \text{{retain (a,b,c);}} \\ \text{output retained triple;} \end{array}$$

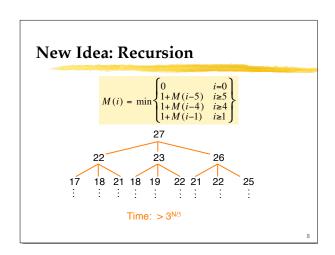
Time: O(N³)
(Not too hard to see some optimizations, but we're after bigger fish...)

Better Idea

Theorem: If last stamp licked in an optimal solution has value v, then previous stamps form an optimal solution for N-v.

<u>**Proof:**</u> if not, we could improve the solution for N by using opt for N-v.

$$M(i) = \min \begin{cases} 0 & i=0 \\ 1+M(i-5) & i \ge 5 \\ 1+M(i-4) & i \ge 4 \\ 1+M(i-1) & i \ge 1 \end{cases}$$
 where $M(i)$ = min number of stamps totaling $i \notin$

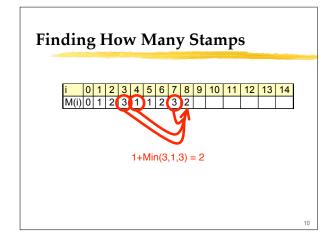


Another New Idea: Avoid Recomputation

- Tabulate values of solved subproblems
 - Top-down: "memoization"
 - Bottom up:

for i = 0, ..., N do
$$M[i] = \min \begin{cases} 0 & i=0 \\ 1+M[i-5] & i \ge 5 \\ 1+M[i-4] & i \ge 4 \\ 1+M[i-1] & i \ge 1 \end{cases}$$
;

• Time: O(N)



Complexity Note

- O(N) is better than O(N³) or O(3^{N/5})
- But still exponential in input size (log N bits)

(E.g., miserably slow if N is 64 bits – $c{\cdot}2^{64}$ steps for 64 bit input.)

 Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in general. See "NP-Completeness" later

12

Elements of Dynamic Programming

- What feature did we use?
- What should we look for to use again?

"Optimal Substructure"
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

• "Repeated Subproblems"

The same subproblems arise in various ways