CSE 417: Algorithms and Computational Complexity

4: Dynamic Programming, I Fibonacci

Winter 2006
Lecture 12
W. L. Ruzzo

Some Algorithm Design Techniques, I

- General overall idea
- Reduce solving a problem to a smaller problem or problems of the same type
- Greedy algorithms
- Used when one needs to build something a piece at a time
- Repeatedly make the greedy choice - the one that looks the best right away
- e.g. closest pair in TSP search
- Usually fast if they work (but often don't)

Some Algorithm Design Techniques, II

- Divide \& Conquer
- Reduce problem to one or more sub-problems of the same type
- Typically, each sub-problem is at most a constant fraction of the size of the original problem
- e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Some Algorithm Design Techniques, III

- Dynamic Programming
- Give a solution of a problem using smaller sub-problems, e.g. a recursive solution
- Useful when the same sub-problems show up again and again in the solution

"Dynamic Programming"

Program - A plan or procedure for dealing with some matter

- Webster's New World Dictionary

A simple case: Computing Fibonacci Numbers

- Recall $F_{n}=F_{n-1}+F_{n-2}$ and $F_{0}=0, F_{1}=1$
- Recursive algorithm:
- Fibo(n)
if $\mathrm{n}=0$ then return(0)
else if $\mathrm{n}=1$ then return(1)
else return(Fibo(n-1)+Fibo(n-2))

Call tree - start

Full call tree

Memo-ization (Caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
- Convert memo-ized algorithm from a recursive one to an iterative one (top-down \rightarrow bottom-up)

Fibonacci - Memo-ized Version

initialize: $F[i] \leftarrow$ undefined for all i
$\mathrm{F}[0] \leftarrow 0$
$\mathrm{F}[1] \leftarrow 1$
FiboMemo(n):
if($\mathrm{F}[\mathrm{n}]$ undefined) $\{$
$\mathrm{F}[\mathrm{n}] \leftarrow$ FiboMemo(n-2)+FiboMemo(n-1)
\}
return($\mathrm{F}[\mathrm{n}]$)

Fibonacci - Dynamic Programming Version

FiboDP(n):
$\mathrm{F}[0] \leftarrow 0$
$\mathrm{F}[1] \leftarrow 1$
for $\mathrm{i}=2$ to n do
$F[i]] \leftarrow F[i-1]+F[i-2]$
endfor
return($\mathrm{F}[\mathrm{n}]$)

Dynamic Programming

- Useful when
- same recursive sub-problems occur repeatedly
- Can anticipate the parameters of these recursive calls
- The solution to whole problem can be figured out without knowing the internal details of how the sub-problems are solved
- principle of optimality

