CSE 417: Algorithms and Computational Complexity

Winter 2006
Instructor: W. L. Ruzzo
Lectures 16-19
Divide and Conquer Algorithms

The Divide and Conquer Paradigm

Outline:
\| General Idea
\| Review of Merge Sort
\| Why does it work?
I Importance of balance
I Importance of super-linear growth
Two interesting applications
Polynomial Multiplication
Matrix Multiplication
|| Finding \& Solving Recurrences

Algorithm Design Techniques

- Divide \& Conquer
\| Reduce problem to one or more sub-problems of the same type
II Typically, each sub-problem is at most a constant fraction of the size of the original problem
e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.
(n) $\mathrm{T}=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}, \mathrm{n} \geq 2$

- $T(1)=0$

Solution: $\Theta(n \log n)$ (details later)

O(n)

Merge Sort

MS(A: array[1..n]) returns array[1..n] \{
If($n=1$) return $A[1]$;
New U:array[1:n/2] = MS(A[1..n/2]);
New L:array[1:n/2] = MS(A[n/2+1..n]);
Return(Merge(U,L));
\}
Merge(U,L: array[1..n]) \{

New C: array[1..2n];
$a=1$; $b=1$;
For $\mathrm{i}=1$ to $2 n$
$\mathrm{C}[\mathrm{i}]=$ "smaller of $\mathrm{U}[\mathrm{a}], \mathrm{L}[\mathrm{b}]$ and correspondingly $\mathrm{a}++$ or $\mathrm{b}++$ ";
Return C;
\}

Going From Code to Recurrence

1. Carefully define what you're counting, and write it down!
"Let $\mathrm{C}(\mathrm{n})$ be the number of comparisons between sort keys used by MergeSort when sorting a list of length $n \geq 1$ "
2. In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.
3. Write Recurrence(s)

Merge Sort

MS(A: arra) 1 (.n]) returns array[1..n] \{
If($\mathrm{n}=1$) return A[1];
New L:array[1:n/2] = MS(A[1._n/2]):
New R:array[1:n/2] $-M S(A[n / 2+1 . . n])$
Return(Merge(L,R));
\}
Merge(A,B: array[1..n]) \{
New C: array[1..2n];
$a=1 ; b=1$;
For $\mathrm{i}=1$ to 2 n \}
$\mathrm{C}[\mathrm{i}]=$ smaller of $\mathrm{Y}[\mathrm{a}], \mathrm{B}[\mathrm{b}]$ and $\mathrm{a}++$ or $\mathrm{b}+\mathrm{t}^{\prime \prime}$;
Return C;
\}
Recursive calls

Recursive case

Operations
being
counted

The Recurrence

Recursive calls

Total time: proportional to C(n) (loops, copying data, parameter passing, etc.)

Why Balanced Subdivision?

- Alternative "divide \& conquer" algorithm:

I Sort n-1
| Sort last 1
|| Merge them
|. $T(n)=T(n-1)+T(1)+3 n$ for $n \geq 2$
| $\mathrm{T}(1)=0$

- Solution: $3 n+3(n-1)+3(n-2) \ldots=\Theta\left(n^{2}\right)$

Another D\&C Approach

- Suppose we've already invented DumbSort, taking time n^{2}
- Try Just One Level of divide \& conquer:
\| DumbSort(first n/2 elements)
I DumbSort(last n/2 elements)
II Merge results
Time: $2(n / 2)^{2}+n=n^{2} / 2+n \ll n^{2}$
D\&C in a nutshell
Almost twice as fast!

Another D\&C Approach, cont.

- Moral 1: "two halves are better than a whole" Two problems of half size are better than one full-size problem, even given the $\mathrm{O}(\mathrm{n})$ overhead of recombining, since the base algorithm has super-linear complexity.
- Moral 2: "If a little's good, then more's better" two levels of D\&C would be almost 4 times faster, 3 levels almost 8 , etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").

Another D\&C Approach, cont.

- Moral 3: unbalanced division less good:
$\|(.1 \mathrm{n})^{2}+(.9 \mathrm{n})^{2}+\mathrm{n}=.82 \mathrm{n}^{2}+\mathrm{n}$
The 18% savings compounds significantly if you carry recursion to more levels, actually giving O(nlogn), but with a bigger constant. So worth doing if you can't get $50-50$ split, but balanced is better if you can.
This is intuitively why Quicksort with random splitter is good - badly unbalanced splits are rare, and not instantly fatal.
ll $(1)^{2}+(n-1)^{2}+n=n^{2}-2 n+2+n$
| Little improvement here.

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.
fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same \times coordinate .
to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants. Obstacle. Impossible to ensure $n / 4$ points in each piece.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\theta\left(n^{2}\right)$
- Return best of 3 solutions.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

Def. Let s_{i} be the point in the 2δ-strip, with the $\mathrm{i}^{\text {th }}$ smallest y -coordinate.

Claim. If $|i-j| \geq 8$, then the distance between s_{i} and s_{j} is at least δ.
Pf.

- No two points lie in same $\frac{1}{2} \delta$-by- $\frac{1}{2} \delta$ box.
- only 8 boxes

Closest Pair Algorithm

```
Closest-Pair(p
    if(n <= ??) return ??
    Compute separation line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L
    Sort remaining points p[1]...p[m] by y-coordinate.
    for i = 1..m
        k = 1
        while i+k <= m && p[i+k].y< p[i].y + \delta
            \delta = min(\delta, distance between p[i] and p[i+k]);
            k++;
    return \delta.
}
```


Going From Code to Recurrence

1. Carefully define what you're counting, and write it down!
"Let $\mathrm{C}(\mathrm{n})$ be the number of comparisons between sort keys used by MergeSort when sorting a list of length $n \geq 1$ "
2. In code, clearly separate base case from recursive case, highlight recursive calls, and operations
being counted.
3. Write Recurrence(s)

Closest Pair of Points: Analysis

Running time.

$$
\mathrm{T}(n) \leq\left\{\begin{array}{cc}
0 & n=1 \\
2 T(n / 2)+O(n) & n>1
\end{array}\right\} \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

BUT - that's only the number of distance calculations

Closest Pair of Points: Analysis

Running time.

$$
\mathrm{T}(n) \leq\left\{\begin{array}{cc}
0 & n=1 \\
2 T(n / 2)+O(n \log n) & n>1
\end{array}\right\} \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Q. Can we achieve $O(n \log n)$?
A. Yes. Don't sort points from scratch each time.

- Sort by x at top level only.
- Each recursive call returns δ and list of all points sorted by y
- Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute $a+b$.

- $O(n)$ bit operations.

Multiply. Given two n-digit integers a and b, compute $a \times b$.

- Brute force solution: $\Theta\left(n^{2}\right)$ bit operations.

Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:

- Multiply four $\frac{1}{2} n$-digit integers.
- Add two $\frac{1}{2} n$-digit integers, and shift to obtain result.

$$
\begin{aligned}
& x=2^{n / 2} \cdot x_{1}+x_{0} \\
& y=2^{n / 2} \cdot y_{1}+y_{0} \\
& x y=\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right)=2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{2}\right) \\
\quad \uparrow \\
\\
\quad \begin{array}{l}
\text { assumes } \mathrm{n} \text { is a power of } 2
\end{array}
\end{gathered}
$$

Karatsuba Multiplication

To multiply two n-digit integers:

- Add two $\frac{1}{2} \mathrm{n}$ digit integers.
- Multiply three $\frac{1}{2} n$-digit integers.
- Add, subtract, and shift $\frac{1}{2} n$-digit integers to obtain result.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-x_{1} y_{1}-x_{0} y_{0}\right)+x_{0} y_{0} \\
& \text { A } \quad \mathrm{B} \quad \mathrm{C}
\end{aligned}
$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O\left(n^{1.585}\right)$ bit operations.

$$
\begin{aligned}
& \mathrm{T}(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, subtract, shift }} \\
& \text { Sloppy version: } T(n) \leq 3 T(n / 2)+O(n) \\
& \Rightarrow \mathrm{T}(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)
\end{aligned}
$$

Multiplication - The Bottom Line

| Naïve:
$\Theta\left(n^{2}\right)$
Karatsuba:
$\Theta\left(\mathrm{n}^{1.59 \ldots}\right)$

- Amusing exercise: generalize Karatsuba to do 5 size $n / 3$ subproblems $=>\Theta$ ($\left.n^{1.46 \ldots}\right)$
- Best known: $\Theta(\mathrm{n} \log \mathrm{n} \log \log \mathrm{n})$
| "Fast Fourier Transform"
|| but mostly unused in practice (unless you need really big numbers)

Recurrences

- Where they come from, how to find them (above)
| Next: how to solve them

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.
(n) $\mathrm{T}=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}, \mathrm{n} \geq 2$

- $1(1)=0$

Solution: $\Theta(n \log n)$ (details later)
now

$\mathrm{O}(\mathrm{n})$
work
per
level

Solve: $T(1)=c$ $T(n)=2 T(n / 2)+c n$

Level	Num	Size	Work
0	$1=2^{0}$	n	cn
1	$2=21$	$\mathrm{n} / 2$	$2 \mathrm{c} / 2$
2	$4=2^{2}$	$\mathrm{n} / 4$	4 c n/4
i	\ldots	$\mathrm{n} / 2^{\text {i }}$	$2^{\text {i }}$ c $\mathrm{n} / 2^{\text {i }}$
\ldots	\ldots	\cdots	\ldots
k-1	$2^{\mathrm{k}-1}$	$\mathrm{n} / 2^{\mathrm{k}-1}$	$2^{k-1} \mathrm{c} n / 2^{k-1}$
k	2^{k}	$n / 2^{k}=1$	$2^{k} T(1)$

Solve: $T(1)=c$ $T(n)=4 T(n / 2)+c n$

Level	Num	Size	Work
0	$1=4^{0}$	n	Cn
1	$4=4^{1}$	$\mathrm{n} / 2$	4 c n/2
2	$16=4^{2}$	$\mathrm{n} / 4$	16 c n/4
\cdots	4	n/ n	$4^{i} \mathrm{c}$ n/2i
\cdots	\cdots	n/2k	${ }^{k-1}$
k-1	$4^{\mathrm{k}-1}$	$\mathrm{n} / 2^{\mathrm{k}-1}$	$4^{\mathrm{k}-1} \mathrm{c} \mathrm{n/2}{ }^{\mathrm{k}-1}$
k	4^{k}	$\mathrm{n} / 2^{\mathrm{k}}=1$	$4^{\mathrm{k}} \mathrm{T}(1)$

$$
\sum_{i-0}^{k} 4^{\prime} c n / 2^{\prime}=O\left(n^{2}\right)
$$

Solve: $T(1)=c$

$$
T(n)=3 T(n / 2)+c n
$$

Level	Num	Size	Work
0	$1=3^{0}$	n	cn
1	$3=31$	$\mathrm{n} / 2$	3 c n/2
2	$9=3^{2}$	$\mathrm{n} / 4$	9 c n/4
i	$3{ }^{\text {i }}$	n/	$3^{\text {i }} \mathrm{c}$ n/2i
.	\cdots	\cdots	\cdots
k-1	$3^{\mathrm{k}-1}$	$\mathrm{n} / 2^{\mathrm{k}-1}$	$3^{k-1} \mathrm{c} n / 2^{k-1}$
k	3^{k}	$n / 2^{k}=1$	3^{k} T(1)

Total Work: $\mathrm{T}(\mathrm{n})=\sum_{i=0}^{k} 3^{i} \mathrm{cn} / 2^{i}$

Solve: $T(1)=c$

$T(n)=3 T(n / 2)+c n$ (cont.)

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{k} 3^{i} c n / 2^{i} \\
& =c n \sum_{i=0}^{k} 3^{i} / 2^{i} \\
& =c n \sum_{i=0}^{k}\left(\frac{3}{2}\right)^{i} \\
& =c n \frac{\left(\frac{3}{2}\right)^{k+1}-1}{\left(\frac{3}{2}\right)-1}
\end{aligned}
$$

$$
\begin{gathered}
\sum_{i=0}^{k} x^{i}= \\
\frac{x^{k+1}-1}{x-1} \\
(x \neq 1)
\end{gathered}
$$

Solve: $T(1)=c$

$$
T(n)=3 T(n / 2)+c n \quad \text { (cont.) }
$$

$$
\begin{aligned}
& =2 \operatorname{cn}\left(\left(\frac{3}{2}\right)^{k+1}-1\right) \\
& <2 \operatorname{cn}\left(\frac{3}{2}\right)^{k+1}
\end{aligned}
$$

$$
=3 \operatorname{cn}\left(\frac{3}{2}\right)^{k}
$$

$$
=3 c n \frac{3^{k}}{2^{k}}
$$

Solve: $T(1)=c$ $\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}$ (cont.)

$$
=3 \operatorname{cn} \frac{3^{\log _{2} n}}{2^{\log _{2} n}}
$$

$$
=3 c n \frac{3^{\log _{2} n}}{}
$$

$$
n
$$

$$
=3 c 3^{\log _{2} n}
$$

$$
=3 c\left(n^{\log _{2} 3}\right)
$$

$$
=O\left(n^{1.59 \ldots}\right)
$$

$$
\begin{aligned}
& a^{\log _{b} n} \\
& =\left(b^{\log _{b} a}\right)^{\log _{b} n} \\
& =\left(b^{\log _{b} n}\right)^{\log _{b} a} \\
& =n^{\log _{b} a}
\end{aligned}
$$

Master Divide and Conquer Recurrence

\| If $T(n)=a T(n / b)+c n^{k}$ for $n>b$ then
if $a>b^{k}$ then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
if $a<b^{k}$ then $T(n)$ is $\Theta\left(n^{k}\right)$
if $a=b^{k}$ then $T(n)$ is $\Theta\left(n^{k} \log n\right)$
[many subproblems => leaves dominate]
[few subproblems => top level dominates]
[balanced $=>$ all $\log n$ levels contribute]
|. Works even if it is $\lceil n / b\rceil$ instead of n / b.

D \& C Summary

1."two halves are better than a whole" if the base algorithm has super-linear complexity.
|| "If a little's good, then more's better" repeat above, recursively
|. Analysis: recursion tree or Master Recurrence

