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CSE 417:  Algorithms and
Computational Complexity

Winter 2006
Instructor: W. L. Ruzzo

Lectures 16-19

Divide and Conquer Algorithms

2

The Divide and Conquer
Paradigm

 Outline:
 General Idea
 Review of Merge Sort
 Why does it work?

 Importance of balance
 Importance of super-linear growth

 Two interesting applications
 Polynomial Multiplication
 Matrix Multiplication

 Finding & Solving Recurrences
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Algorithm Design Techniques

 Divide & Conquer
 Reduce problem to one or more sub-problems of the

same type
 Typically, each sub-problem is at most a constant

fraction of the size of the original problem
 e.g. Mergesort, Binary Search, Strassen’s Algorithm,

Quicksort (kind of)
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Mergesort (review)

Mergesort: (recursively) sort 2 half-lists,
then merge results.

 T(n)=2T(n/2)+cn,  n≥2
 T(1)=0
 Solution: Θ(n log n)

(details later)
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Merge Sort

MS(A: array[1..n]) returns array[1..n] {
If(n=1) return A[1];
New U:array[1:n/2] = MS(A[1..n/2]);
New L:array[1:n/2] = MS(A[n/2+1..n]);
Return(Merge(U,L));
}

Merge(U,L: array[1..n]) {
New C: array[1..2n];
a=1; b=1;
For i = 1 to 2n

C[i] = “smaller of U[a], L[b] and correspondingly a++ or b++”;
Return C;
}

A U C

L

split     sort    merge
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Going From Code to Recurrence

1. Carefully define what you’re counting, and
write it down!
“Let C(n) be the number of comparisons between sort
keys used by MergeSort when sorting a list of length
n ≥ 1”

2. In code, clearly separate base case from
recursive case, highlight recursive calls, and
operations being counted.

3. Write Recurrence(s)
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Merge Sort

MS(A: array[1..n]) returns array[1..n] {
If(n=1) return A[1];
New L:array[1:n/2] = MS(A[1..n/2]);
New R:array[1:n/2] = MS(A[n/2+1..n]);
Return(Merge(L,R));
}

Merge(A,B: array[1..n]) {
New C: array[1..2n];
a=1; b=1;
For i = 1 to 2n {

C[i] = “smaller of A[a], B[b] and a++ or b++”;
Return C;
}

Recursive
calls

Base Case

Recursive
case
Operations
being 
counted
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The Recurrence

Total time: proportional to C(n)
  (loops, copying data, parameter passing, etc.)

! 

C(n) =
0 if n =1

2C(n /2) + (n "1) if n >1

# 
$ 
% 

One compare per
element added to
merged list, except
the last.

Base case

Recursive calls
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Why Balanced Subdivision?

 Alternative "divide & conquer" algorithm:
 Sort n-1
 Sort last 1
 Merge them

 T(n)=T(n-1)+T(1)+3n   for n≥2
 T(1)=0
 Solution: 3n + 3(n-1) + 3(n-2) … = Θ(n2)
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Another D&C Approach

 Suppose we've already invented
DumbSort, taking time n2

 Try Just One Level of divide & conquer:
 DumbSort(first  n/2 elements)
 DumbSort(last  n/2 elements)
 Merge results

 Time:  2 (n/2)2 + n = n2/2 + n << n2

 Almost twice as fast!

D&C in a 
nutshell
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Another D&C Approach, cont.

 Moral 1: “two halves are better than a whole”
Two problems of half size are better than one full-size
problem, even given the O(n) overhead of recombining,
since the base algorithm has super-linear complexity.

 Moral 2: “If a little's good, then more's better”
two levels of D&C would be almost 4 times faster, 3
levels almost 8, etc., even though overhead is growing.
Best is usually full recursion down to some small
constant size (balancing "work" vs "overhead").
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Another D&C Approach, cont.

 Moral 3: unbalanced division less good:
 (.1n)2 + (.9n)2 + n = .82n2 + n

 The 18% savings compounds significantly if you carry
recursion to more levels, actually giving O(nlogn), but with a
bigger constant.  So worth doing if you can’t get 50-50 split,
but balanced is better if you can.

 This is intuitively why Quicksort with random splitter is good
– badly unbalanced splits are rare, and not instantly fatal.

 (1)2 + (n-1)2 + n = n2 - 2n + 2 + n
 Little improvement here.
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5.4  Closest Pair of Points
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Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force.  Check all pairs of points p and q with Θ(n2) comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.
Obstacle.  Impossible to ensure n/4 points in each piece.

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.
 Combine:  find closest pair with one point in each side.
 Return best of 3 solutions.

12

21
8

L

seems like Θ(n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)
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12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)
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12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.
 Only check distances of those within 11 positions in sorted list!

L

δ = min(12, 21)
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Closest Pair of Points

Def.  Let si be the point in the 2δ-strip, with
the ith smallest y-coordinate.

Claim.  If |i – j| ≥ 8, then the distance between
si and sj is at least δ.
Pf.

 No two points lie in same ½δ-by-½δ box.
 only 8 boxes

δ

29
30

31

28

26

25

δ

½δ

½δ

39

i

j

27
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
   if(n <= ??) return ??

   Compute separation line L such that half the points
   are on one side and half on the other side.

   δ1 = Closest-Pair(left half)
   δ2 = Closest-Pair(right half)
   δ  = min(δ1, δ2)

   Delete all points further than δ from separation line L

   Sort remaining points p[1]…p[m] by y-coordinate.

   for i = 1..m
      k = 1
      while i+k <= m && p[i+k].y < p[i].y + δ
        δ = min(δ, distance between p[i] and p[i+k]);
        k++;

   return δ.
}
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Going From Code to Recurrence

1. Carefully define what you’re counting, and write it
down!
“Let C(n) be the number of comparisons between sort keys used
by MergeSort when sorting a list of length n ≥ 1”

2. In code, clearly separate base case from recursive
case, highlight recursive calls, and operations
being counted.

3. Write Recurrence(s)
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
   if(n <= 1) return ∞

   Compute separation line L such that half the points
   are on one side and half on the other side.

   δ1 = Closest-Pair(left half)
   δ2 = Closest-Pair(right half)
   δ  = min(δ1, δ2)

   Delete all points further than δ from separation line L

   Sort remaining points p[1]…p[m] by y-coordinate.

   for i = 1..m
      k = 1
      while i+k <= m && p[i+k].y < p[i].y + δ
        δ = min(δ, distance between p[i] and p[i+k]);
        k++;

   return δ.
}

2T(n / 2)

O(n)

Base Case

Recursive calls (2)

Basic operations at 
this recursive level

Basic operations:
distance calcs

0
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Closest Pair of Points:  Analysis

Running time.

BUT - that’s only the number of distance calculations
! 

T(n) "
0 n =1

2T n /2( ) + O(n ) n >1

# 
$ 
% 

& 
' 
( 

) T(n)  =  O(n logn)
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
   if(n <= 1) return ∞

   Compute separation line L such that half the points
   are on one side and half on the other side.

   δ1 = Closest-Pair(left half)
   δ2 = Closest-Pair(right half)
   δ  = min(δ1, δ2)

   Delete all points further than δ from separation line L

   Sort remaining points p[1]…p[m] by y-coordinate.

   for i = 1..m
      k = 1
      while i+k <= m && p[i+k].y < p[i].y + δ
        δ = min(δ, distance between p[i] and p[i+k]);
        k++;

   return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Base Case

Recursive calls (2)

Basic operations at 
this recursive level

Basic operations:
comparisons

0

1
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Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points from scratch each time.
 Sort by x at top level only.
 Each recursive call returns δ and list of all points sorted by y
 Sort by merging two pre-sorted lists.

  

! 

T(n) " 2T n /2( ) + O(n) # T(n) = O(n logn)

! 

T(n) "
0 n =1

2T n /2( ) + O(n logn) n >1

# 
$ 
% 

& 
' 
( 

) T(n)  =  O(n log2
n)

5.5  Integer Multiplication
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Integer Arithmetic

Add.  Given two n-digit integers a and b, compute a + b.
 O(n) bit operations.

Multiply.  Given two n-digit integers a and b, compute a × b.
 Brute force solution: Θ(n2) bit operations.

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

*

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

Multiply
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To multiply two n-digit integers:
 Multiply four ½n-digit integers.
 Add two ½n-digit integers, and shift to obtain result.

Divide-and-Conquer Multiplication:  Warmup

    

! 

T(n)  =  4T n /2( )
recursive calls

1 2 4 3 4 
 +  "(n)

add, shift

1 2 3 
 #  T(n) ="(n

2
)

  

! 

x = 2
n / 2
" x

1
 +  x

0

y = 2
n / 2
" y

1
 +  y

0

xy = 2
n / 2
" x

1
+ x

0( ) 2
n / 2
" y

1
 + y

0( ) = 2
n
" x

1
y

1
 + 2

n / 2
" x

1
y

0
+ x

0
y

1( ) + x
0
y

0

assumes n is a power of 2
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To multiply two n-digit integers:
 Add two ½n digit integers.
 Multiply three ½n-digit integers.
 Add, subtract, and shift ½n-digit integers to obtain result.

Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit integers
in O(n1.585) bit operations.

Karatsuba Multiplication

  

! 

x = 2
n / 2
" x1  +  x0

y = 2
n / 2
" y1  +  y0

xy = 2
n
" x1y1  + 2

n / 2
" x1y0 + x0 y1( ) + x0 y0

= 2
n
" x1y1  + 2

n / 2
" (x1 + x0 ) (y1 + y0 )  # x1y1 # x0 y0( ) + x0 y0

  

! 

T(n) " T n /2# $( ) + T n /2% &( ) + T 1+ n /2% &( )
recursive calls

1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 
+ '(n)

add, subtract, shift

1 2 4 3 4 

Sloppy version :  T(n) " 3T(n /2) + O(n)

( T(n)  =  O(n
log 2 3

)  =  O(n1.585 )

A B CA C
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Multiplication – The Bottom Line

 Naïve: Θ(n2)
 Karatsuba: Θ(n1.59…)
 Amusing exercise: generalize Karatsuba to do 5

size n/3 subproblems => Θ(n1.46…)
 Best known: Θ(n log n loglog n)
 "Fast Fourier Transform"
 but mostly unused in practice (unless you need really

big numbers)
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Recurrences

 Where they come from,
how to find them (above)

 Next: how to solve them
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Mergesort (review)

Mergesort: (recursively) sort 2 half-lists,
then merge results.

 T(n)=2T(n/2)+cn,  n≥2
 T(1)=0
 Solution: Θ(n log n)

(details later)
Lo

g 
n 

le
ve

ls O(n)
work
per
levelnow
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Solve: T(1) = c
     T(n) = 2 T(n/2) + cn

Level Num Size Work
0 1=20 n cn
1 2=21 n/2 2 c n/2
2 4=22 n/4 4 c n/4
… … … …
i 2i n/2i 2i c n/2i

… … … …
k-1 2k-1 n/2k-1 2k-1 c n/2k-1

k 2k n/2k=1 2k T(1)

Total work: add last col
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Solve: T(1) = c
     T(n) = 4 T(n/2) + cn

. .  .
  . ..

...

Level Num Size Work
0 1=40 n cn
1 4=41 n/2 4 c n/2
2 16=42 n/4 16 c n/4
… … … …
i 4i n/2i 4i c n/2i

… … … …
k-1 4k-1 n/2k-1 4k-1 c n/2k-1

k 4k n/2k=1 4k T(1)

! 

4
i
cn / 2

i
= O(n

2

i=0

k

" )
40

Solve: T(1) = c
            T(n) = 3 T(n/2) + cn

Level Num Size Work
0 1=30 n cn
1 3=31 n/2 3 c n/2
2 9=32 n/4 9 c n/4
… … … …
i 3i n/2i 3i c n/2i

… … … …
k-1 3k-1 n/2k-1 3k-1 c n/2k-1

k 3k n/2k=1 3k T(1)

. .  .
  . ..

...
n = 2k ; k = log2n

Total Work:  T(n) = ! =
k
i

ii
/cn

0
23
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Solve: T(1) = c
            T(n) = 3 T(n/2) + cn    (cont.)

! 

= 3
i
cn /2

i

i= 0

k

"

= cn 3
i
/2

i

i= 0

k

"

= cn 3

2( )
i

i= 0

k

"

= cn
3

2( )
k+1
#1

3

2( ) #1

)n(T

( )1

1

1
1

0

!

"

"

=#

+

=

x

x

x

x

k

k
i

i
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Solve: T(1) = c
            T(n) = 3 T(n/2) + cn    (cont.)

! 

= 2cn 3

2( )
k+1
"1( )

< 2cn 3

2( )
k+1

= 3cn 3

2( )
k

= 3cn
3
k

2
k
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! 

a
log

b
n

= b
log

b
a( )
log

b
n

= b
log

b
n( )
log

b
a

= n logb a

Solve: T(1) = c
            T(n) = 3 T(n/2) + cn    (cont.)

! 

= 3cn
3log2 n

2
log2 n

= 3cn
3log2 n

n

= 3c3log2 n

= 3c n log2 3( )
=O n

1.59...( )
44

Master Divide and Conquer
Recurrence

 If T(n) = aT(n/b)+cnk for n > b then
if a > bk then T(n) is  [many subproblems

   => leaves dominate]

if  a < bk then T(n) is Θ(nk) [few subproblems => 
  top level dominates]

if a = bk then T(n) is Θ(nk log n) [balanced => all log n 
  levels contribute]

 Works even if it is n/b instead of n/b.

)(
log abn!
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D & C Summary

 “two halves are better than a whole”
if the base algorithm has super-linear complexity.

 “If a little's good, then more's better”
repeat above, recursively

 Analysis: recursion tree or Master Recurrence


