

- 100k file, 6 letter alphabet:
- File Size:
- ASCII, 8 bits/char: 800 kb bits
- $2^{3}>6$; 3 bits/char: 300kbits
- 00,01,10 for a,b,d; 11xx for c,e,f: 2.52 bits/char $74 \%{ }^{*} 2+26 \%{ }^{*} 4$: 252 kbits
- Optimal?
- Why?
- Storage, transmission vs 1 Ghz cpu

CSE 417, Wi '06, Ruzzo

(a) [f:5 [e:9] c:12 b:13 d:16 a:45	(3) [::12 b:13 (14) a:16
(c)	(d)
(e) a:45	(f)

Correctness Strategy

- Optimal solution may not be unique, so cannot prove that greedy gives the only possible answer.
- Instead, show that greedy's solution is as good as any.

CSE 417, Wi ' ${ }^{06}$, Ruzzo

Defn: A pair of leaves is an inversion if $\operatorname{depth}(\mathrm{x}) \geq \operatorname{depth}(\mathrm{y})$
and
freq(x) \geq freq (y)

Claim: If we flip an inversion, cost never increases.
Why? All other things being equal, better to give more frequent letter the shorter code.

$$
\overbrace{(d(x) * f(x)+d(y) * f(y))}^{\text {before }}-\overbrace{(d(x) * f(y)+d(y) * f(x))}^{\text {(d(x)-d(y))*(f(x)-f(y)) })}=
$$

I.e. non-negative cost savings.

Lemma 2:

"Optimal Substructure"

Let (C, f) be a problem instance: C an n -letter alphabet with letter frequencies $f(c)$ for c in C.
For any x, y in C, let C^{\prime} be the ($n-1$) letter alphabet $C-\{x, y\} \cup\{z\}$ and for all c in C^{\prime} define

$$
f^{\prime}(c)= \begin{cases}f(c), & \text { if } c \neq x, y, z \\ f(x)+f(y), & \text { if } c=z\end{cases}
$$

Let T^{\prime} be an optimal tree for ($\mathrm{C}^{\prime}, \mathrm{f}^{\prime}$).
Then

is optimal for (C, f) among all trees having x, y as siblings CSE 417, Wi '06, Ruzzo

Lemma 1:

"Greedy Choice Property"
The 2 least frequent letters might as well be siblings at deepest level

- Let a be least freq, b $2^{\text {nd }}$
- Let u, v be siblings at max depth, $\mathrm{f}(\mathrm{u}) \leq \mathrm{f}(\mathrm{v})$ (why must they exist?)
- Then (a, u) and (b,v) are inversions. Swap them.

CSE 417, Wi ' ${ }^{06, ~ R u z z o ~}$

Proof:

$$
\begin{aligned}
B(T) & =\sum_{c \in C} d_{T}(c) \cdot f(c) \\
B(T)-B\left(T^{\prime}\right) & =d_{T}(x) \cdot(f(x)+f(y))-d_{T^{\prime}}(z) \cdot f^{\prime}(z) \\
& =\left(d_{T^{\prime}}(z)+1\right) \cdot f^{\prime}(z)-d_{T^{\prime}}(z) \cdot f^{\prime}(z) \\
& =f^{\prime}(z)
\end{aligned}
$$

Suppose \hat{T} (having $\times \& y$ as siblings) is better than T, i.e.
$B(\hat{T})<B(T)$. Collapse $\mathrm{x} \& \mathrm{y}$ to z , forming \hat{T}^{\prime}; as above:

$$
B(\hat{T})-B\left(\hat{T}^{\prime}\right)=f^{\prime}(z)
$$

Then:

$$
B\left(\hat{T}^{\prime}\right)=B(\hat{T})-f^{\prime}(z)<B(T)-f^{\prime}(z)=B\left(T^{\prime}\right)
$$

Contradicting optimality of T^{\prime}

- Huffman is optimal
- BUT still might do better!
- Huffman encodes fixed length blocks. What if we vary them?
- Huffman uses one encoding throughout a file. What if characteristics change?
- What if data has structure? E.g. raster images, video,..
Huffman is lossless. Necessary?
- LZW, MPEG, ...

CSE 417, Wi ' 06 , Ruzzo

